The Pharmacogenomics and Experimental Therapeutics (PhET) Program is a cohesive, integrated group that brings together a diverse team of 48 members representing 9 different Departments. PhET interfaces with all of the other Programs to integrate fundamental cancer research with clinical care and clinical research objectives. The overall goal of the Program is to foster interaction between basic and clinical investigators, with a focus on pharmacogenomics and innovative molecular targets that are evaluated in the context of bio- or genetic- marker driven clinical trials at all phases of drug development, with the ultimate goal of developing innovative, personalized and effective therapies for cancer patients. The two program coleaders, M. Eileen Dolan, PhD, a laboratory-based scientist with experience in preclinical and translational studies, and Walter Stadler, MD, a physician-scientist with expertise in clinical trials and clinical drug development, work well together to promote the goals of the PhET Program. The Program's investigators have made major contributions including the identification of putative pharmacogenomic predictors of cancer therapeutic efficacy and toxicity, elucidation of predictive biomarkers of molecular pathway-directed therapy, and discovery of DNA repair mechanisms that have the potential for being therapeutic targets. Pharmacogenomic research within the program interfaces with basic research, translational, clinical and implementation science. The discoveries and contributions span the entire spectrum of translational research including classic """"""""bench-to-bedside"""""""" and """"""""bedside-to-bench"""""""" concepts (i.e., """"""""T1 translation""""""""), as well as translation from research to practice in what has been termed 'T2"""""""" translation or implementation science. The integrated scientific themes are: 1) Translational pharmacogenomic studies through pathway-directed as well as unbiased discovery approaches in model and clinical systems; 2) Development of novel therapeutic molecular targets, including angiogenesis, DNA repair, and defined molecular pathways; 3) Novel Phase I, II, and III biomarker-driven clinical trials, including the development of combined modality approaches, and novel clinical trial designs;and 4) Studies to incorporate biomarkers, and especially pharmacogenomic biomarkers, into clinical care.

Public Health Relevance

The Pharmacogenomics and Experimental Therapeutics program is the clinical and translational component of the University of Chicago Comprehensive Cancer Center and provides expertise in evaluation of molecular therapeutic targets to implementation in a clinical setting, with an emphasis on pharmacogenomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744829
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$23,671
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Li, Gang; Montgomery, Jeffrey E; Eckert, Mark A et al. (2017) An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun 8:1775
Stoddart, Angela; Wang, Jianghong; Hu, Chunmei et al. (2017) Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. Blood 129:2959-2970
Wing, Claudia; Komatsu, Masaaki; Delaney, Shannon M et al. (2017) Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 22:79-88
Shah, Palak; Trinh, Elaine; Qiang, Lei et al. (2017) Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules 22:
Qiang, Lei; Sample, Ashley; Shea, Christopher R et al. (2017) Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13:2086-2103
Morita, Shuhei; Villalta, S Armando; Feldman, Hannah C et al. (2017) Targeting ABL-IRE1? Signaling Spares ER-Stressed Pancreatic ? Cells to Reverse Autoimmune Diabetes. Cell Metab 25:1207
Davis, Trevor L; Rebay, Ilaria (2017) Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 144:2640-2651
Kathayat, Rahul S; Elvira, Pablo D; Dickinson, Bryan C (2017) A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling. Nat Chem Biol 13:150-152
Hu, Xue; Li, Li; Yu, Xinyi et al. (2017) CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 8:111847-111865
Hasan, Yasmin; Waller, Joseph; Yao, Katharine et al. (2017) Utilization trend and regimens of hypofractionated whole breast radiation therapy in the United States. Breast Cancer Res Treat 162:317-328

Showing the most recent 10 out of 613 publications