The Pharmacogenomics and Experimental Therapeutics (PhET) Program is a cohesive, integrated group that brings together a diverse team of 48 members representing 9 different Departments. PhET interfaces with all of the other Programs to integrate fundamental cancer research with clinical care and clinical research objectives. The overall goal of the Program is to foster interaction between basic and clinical investigators, with a focus on pharmacogenomics and innovative molecular targets that are evaluated in the context of bio- or genetic- marker driven clinical trials at all phases of drug development, with the ultimate goal of developing innovative, personalized and effective therapies for cancer patients. The two program coleaders, M. Eileen Dolan, PhD, a laboratory-based scientist with experience in preclinical and translational studies, and Walter Stadler, MD, a physician-scientist with expertise in clinical trials and clinical drug development, work well together to promote the goals of the PhET Program. The Program's investigators have made major contributions including the identification of putative pharmacogenomic predictors of cancer therapeutic efficacy and toxicity, elucidation of predictive biomarkers of molecular pathway-directed therapy, and discovery of DNA repair mechanisms that have the potential for being therapeutic targets. Pharmacogenomic research within the program interfaces with basic research, translational, clinical and implementation science. The discoveries and contributions span the entire spectrum of translational research including classic "bench-to-bedside" and "bedside-to-bench" concepts (i.e., "T1 translation"), as well as translation from research to practice in what has been termed 'T2" translation or implementation science. The integrated scientific themes are: 1) Translational pharmacogenomic studies through pathway-directed as well as unbiased discovery approaches in model and clinical systems; 2) Development of novel therapeutic molecular targets, including angiogenesis, DNA repair, and defined molecular pathways; 3) Novel Phase I, II, and III biomarker-driven clinical trials, including the development of combined modality approaches, and novel clinical trial designs;and 4) Studies to incorporate biomarkers, and especially pharmacogenomic biomarkers, into clinical care.

Public Health Relevance

The Pharmacogenomics and Experimental Therapeutics program is the clinical and translational component of the University of Chicago Comprehensive Cancer Center and provides expertise in evaluation of molecular therapeutic targets to implementation in a clinical setting, with an emphasis on pharmacogenomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744829
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$23,671
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Feng, Christine H; Gerry, Emily; Chmura, Steven J et al. (2015) An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 91:58-64
Ming, Mei; Zhao, Baozhong; Shea, Christopher R et al. (2015) Loss of sirtuin 1 (SIRT1) disrupts skin barrier integrity and sensitizes mice to epicutaneous allergen challenge. J Allergy Clin Immunol 135:936-45.e4
Ming, Mei; Zhao, Baozhong; Qiang, Lei et al. (2015) Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochem Photobiol 91:242-7
Shah, Palak; He, Yu-Ying (2015) Molecular regulation of UV-induced DNA repair. Photochem Photobiol 91:254-64
Ming, Mei; Han, Weinong; Zhao, Baozhong et al. (2014) SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res 74:5925-33
Ramírez, Jacqueline; Kim, Tae Won; Liu, Wanqing et al. (2014) A pharmacogenetic study of aldehyde oxidase I in patients treated with XK469. Pharmacogenet Genomics 24:129-32
Rudra, Sonali; Al-Hallaq, Hania A; Feng, Christine et al. (2014) Effect of RTOG breast/chest wall guidelines on dose-volume histogram parameters. J Appl Clin Med Phys 15:4547
Weng, Liming; Ziliak, Dana; Lacroix, Bonnie et al. (2014) Integrative "omic" analysis for tamoxifen sensitivity through cell based models. PLoS One 9:e93420
Stumpf, Melanie; Zhou, Xuyu; Chikuma, Shunsuke et al. (2014) Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur J Immunol 44:1737-46
Geeleher, Paul; Cox, Nancy J; Huang, R Stephanie (2014) Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 15:R47

Showing the most recent 10 out of 354 publications