The Cancer Molecular Imaging Program Area is composed of 18 members, spanning 7 Departments within UCLA. In the past competing cycle, investigators from this Program authored 265 publications, of which 232 (88%) were inter-programmatic and 89 (34%) intra-programmatic. 71 (27%) were placed in high-impact ournals. Nine members of this Program Area used 6 out of the 8 Shared Resources that are currently funded by the JCCC. During the current funding year, peer-reviewed funding totaled $4.4 million in total costs, including $3.8 million from the National Cancer Institute. As with other Program Areas, JCCC fosters a number of interactive activities and many of the Shared Resources that support investigators in the CMI Program Area. During the current grant cycle, funds from the JCCC in the form of CCSG Developmental Funds, institutional support and philanthropic gifts to the CMI Program Area total $317,584. These funds supported Seed Grants, recruitment/retention &Program Area Leadership support. Four of the Program Area Members were the recipients of JCCC support. Molecular imaging is a powerful set of approaches to reveal functional changes in living subjects that has enabled compelling insights into human health and disease. The newly proposed JCCC Cancer Molecular Imaging Program Area brings together investigators with a common focus on employing molecular imaging tools to investigate cancer in living individuals, from laboratory rodent models to patients. The efforts of CMI investigators are organized around four main themes. 1) Development of instrumentation and analytical tools. Moving molecular imaging forward requires constant development and improvement in instrumentation to provide higher resolution, sensitivity, and quantitative measurement of biological molecules and processes in vivo. 2) Development of novel molecular imaging approaches. CMI Program Area members have been leaders in the field of molecular imaging, with significant contributions in novel tracers, imaging gene expression using reporter genes, developing animal models to exploit the advantages of non-invasive, repeated and quantitative imaging, and in development of multimodality imaging instrumentation and analytic procedures. These tools are employed in the study of cancer initiation and progression, metastatic spread, and response to treatment, in preclinical models. 3) Imaging immune responses and response to immunotherapy. An important focus of the CMI Program Area is to develop the tools to monitor immune responses and follow the effects of cancer immunotherapy in living individuals. 4) Translation of imaging technologies to clinical contexts for cancer patients. Ultimately, the goal of the CMI Program Area is to improve the understanding, detection, and treatment of cancer. CMI Program Area members pursue translational goals that include both determining the best use of currently available molecular tracers in the clinic (e.g., FDG-PET, FLT-PET) as well as translating new molecular tracers through clinical evaluation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016042-38
Application #
8392125
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
38
Fiscal Year
2013
Total Cost
$139,319
Indirect Cost
$66,161
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Li, Gang; Lu, Xuyang (2015) A Bayesian approach for instrumental variable analysis with censored time-to-event outcome. Stat Med 34:664-84
Epeldegui, Marta; Blom, Bianca; Uittenbogaart, Christel H (2015) BST2/Tetherin is constitutively expressed on human thymocytes with the phenotype and function of Treg cells. Eur J Immunol 45:728-37
Bower, Julienne E; Crosswell, Alexandra D; Stanton, Annette L et al. (2015) Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer 121:1231-40
Arensman, Michael D; Telesca, Donatello; Lay, Anna R et al. (2014) The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther 13:2303-14
Li, Keyu; Tavaré, Richard; Zettlitz, Kirstin A et al. (2014) Anti-MET immunoPET for non-small cell lung cancer using novel fully human antibody fragments. Mol Cancer Ther 13:2607-17
Ke, Ruian; Loverdo, Claude; Qi, Hangfei et al. (2014) Modelling clinical data shows active tissue concentration of daclatasvir is 10-fold lower than its plasma concentration. J Antimicrob Chemother 69:724-7
Fu, Maoyong; Maresh, Erin L; Helguera, Gustavo F et al. (2014) Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer. Mol Cancer Ther 13:902-15
Leoh, Lai Sum; Morizono, Kouki; Kershaw, Kathleen M et al. (2014) Gene delivery in malignant B cells using the combination of lentiviruses conjugated to anti-transferrin receptor antibodies and an immunoglobulin promoter. J Gene Med 16:11-27
Tong, Maomeng; McHardy, Ian; Ruegger, Paul et al. (2014) Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J 8:2193-206
De Azambuja, Katherine; Barman, Provabati; Toyama, Joy et al. (2014) Validation of an HPV16-mediated carcinogenesis mouse model. In Vivo 28:761-7

Showing the most recent 10 out of 192 publications