It is now clear that tumor-immune system interactions are far more complex than simple CTL-mediated tumor cell killing, and that effectively harnessing the immune system to control human cancers requires an integrated understanding of immune interactions ranging from clinically significant anti-tumor immunity, to counter-regulatory limitation of this immunity, to immune responses that actually support tumor development and survival. The overall goal of the Tumor Immunology and Immunotherapy (Til) program is to translate the understanding of the immune responses to cancer (both anti-tumor and pro-survival) into innovative approaches for the assessment and treatment of patients with cancer. To accomplish this, TH research is focused around four inter-related themes: Theme 1: Biology of immune cell cancers; Theme 2: Mechanisms of immunological tumor rejection; Theme 3; Microenvironment and host-tumor interactions and Theme 4; Immunotherapy and clinical discovery. The Program is co-led by Kelvin Lee, MD and Kunle Odunsi MD, PhD, who have strong interests in both basic and clinical/population aspects of tumor immunology and immunotherapy. Dr. Lee's leadership efforts focus on the basic and preclinical/translational research in the Program, which dovetails with Dr. Odunsi's leadership focus on the translation and clinical research efforts. The ability to translate research is a particular strength of TH, due in large part to the robust and longstanding inter-programmatic and basic science-clinical interactions. This strength has been enhanced over the last funding cycle by the establishment of the RPCI Center for Immunotherapy (CFI), led by Dr. Odunsi. The CFl houses all the RPCI immunotherapy clinical trials and infrastructure, including new cGMP production and clinical immunomonitoring facilities. These initiatives have occurred in conjunction with relocation (in 2008) of TH membership into 50,000 square feet of new contiguous laboratory space in the new RPCI Center for Pharmacology & Genetics, and the ongoing complete renovation of 36,800 sf in the Cancer Cell Center (supported by C06 RR 020132-01 A l , K. Lee PI) to house TH and CFI members. The Program is comprised of 28 members from 8 RPCI departments (Immunology, Pediatrics, Neurosurgery, Medicine, Molecular and Cellular Biology, Gynecologic Oncology, Cancer Prevention and Control, Surgical Oncology and Pathology), whose total peer-reviewed funding is $10.9M (NCI funding $3.2M) and a total funding of $14.2M. This compares to $6.9M peer reviewed/$9.0M total funding at the last renewal. Since the last renewal, 5 TH members have left the Institute and 3 others have moved to other Programs, while 15 new members (9 recruited from outside the Institute) have joined. Of the 481 publications generated over the last funding cycle, 22% are intra-programmatic and 20% are inter-programmatic, 50 publications are in journals with Impact Factor>10. The Program continues to actively translate its basic science into the clinical arena, with 16 active investigator-initiated trials currently accruing.

Public Health Relevance

It has now become clear that various components ofthe immune system play opposing roles in inhibiting cancer growth as well as supporting its survival. The research ofthe Tumor Immunology and Immunotherapy Program seeks to understand how the immune system responds to cancer, and apply this understanding to new and innovative approaches to diagnose and treat patients with cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016056-40
Application #
9273382
Study Section
Subcommittee A - Cancer Centers (NCI-A)
Project Start
Project End
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
40
Fiscal Year
2017
Total Cost
$79,913
Indirect Cost
$52,981
Name
Roswell Park Cancer Institute Corp
Department
Type
Independent Hospitals
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Dasgupta, Subhamoy; Rajapakshe, Kimal; Zhu, Bokai et al. (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249-254
La Shu, Shin; Yang, Yunchen; Allen, Cheryl L et al. (2018) Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci Rep 8:12905
Mayor, Paul C; Eng, Kevin H; Singel, Kelly L et al. (2018) Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol 141:1028-1035
Gabriel, Emmanuel; Attwood, Kristopher; Al-Sukhni, Eisar et al. (2018) Age-related rates of colorectal cancer and the factors associated with overall survival. J Gastrointest Oncol 9:96-110
Ma, Wen Wee; Xie, Hao; Fetterly, Gerald et al. (2018) A Phase Ib Study of the FGFR/VEGFR Inhibitor Dovitinib With Gemcitabine and Capecitabine in Advanced Solid Tumor and Pancreatic Cancer Patients. Am J Clin Oncol :
Zhang, Dingxiao; Tang, Dean G; Rycaj, Kiera (2018) Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 52:94-106
Eng, Kevin H; Szender, J Brian; Etter, John Lewis et al. (2018) Paternal lineage early onset hereditary ovarian cancers: A Familial Ovarian Cancer Registry study. PLoS Genet 14:e1007194
Barger, Carter J; Zhang, Wa; Sharma, Ashok et al. (2018) Expression of the POTE gene family in human ovarian cancer. Sci Rep 8:17136
Chen, George L; Carpenter, Paul A; Broady, Raewyn et al. (2018) Anti-Platelet-Derived Growth Factor Receptor Alpha Chain Antibodies Predict for Response to Nilotinib in Steroid-Refractory or -Dependent Chronic Graft-Versus-Host Disease. Biol Blood Marrow Transplant 24:373-380
Leonova, Katerina; Safina, Alfiya; Nesher, Elimelech et al. (2018) TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells. Elife 7:

Showing the most recent 10 out of 1555 publications