The Microscopy Shared Resource (MSR) is a centrally-located resource with cutting-edge instruments and highly trained experts to provide outstanding support for OSUCCC scientists for confocal, light, scanning electron and transmission electron microscopy, the MSR has two electron microscopes and four confocals all purchased since 2005 through federal grants and outstanding institutional support. These instruments include two single photon Olympus FVI 000 confocal microscopes each with four lasers and high N.A. objectives specifically for fixed cells and tissue, an FEI Tecnai BioTwin transmission electron microscope, and an Olympus FVI 000 multiphoton confocal instrument with a MaiTai DeepSee laser to probe deep into tumors in both live animals and fixed tissue. The MSR is led by Dr. Richard Burry, an established and well funded scientist with over 30 years of extensive expertise in microscopy, who along with an experienced and highly-trained staff, provides OSUCCC investigators vital consultation in experimental design and image analysis. Usage and productivity from the MSR is enhanced by well-organized training courses and individual training offered by staff members. The MSR is extensively used across OSUCCC scientific programs providing service to >30 OSUCCC member labs to generate the images for high quality cancer relevant publications and grants. The MSR is centrally located on the second floor of the Biomedical Research Tower (BRT) close to the labs of the OSUCCC members. Based on the expanding capabilities of the MSR and increases in number of grant applications from OSUCCC members, the OSUCCC usage is estimated to increase dramatically over the next five years based on strategic recruitment goals and expanded demand for high-end microscopy in cancer research. The MSR is supported by outstanding institutional resources by leveraging extensive partnerships with OSU Colleges, the OSU Office of Research, grants from the State of Ohio and the OSUCCC. The MSR is a new OSUCCC shared resource, previously with a strong user base as an OSU core facility, and thus fulfills NIH goals to consolidate core facilities for maximal efficiency and utilization by NIH funded investigators. Collectively the MSR is a critical shared resource for OSUCCC investigators seeking to identify specific cells and proteins in normal tissue and in tumors to enhance our understanding of fundamental processes of cancer in developing therapeutic strategies.

Public Health Relevance

The Microscopy Shared Resource (MSR) provides timely and high quality service to support OSUCCC investigators in a convenient, central location. Instrumentation and expert technical advice and training support a variety of sophisticated approaches in cancer research including: detection of viruses with transmission electron microscopy, examination of nanostructures for drug delivery with cryo-transmission electron microscopy, live cell imaging of cells in response to different treatments, multiple beam live cell confocal, reconstruction of pre-clinical breast tumor models using multiphoton microscopes, and following movement of immune cells in tumors of living animals with multiphoton microscopy. The MSR provides a vital shared resource for cancer investigators to translate cancer biology to new treatments against cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Salem, Galena; Ruppert, Amy S; Elder, Patrick et al. (2015) Lower dose of antithymocyte globulin does not increase graft-versus-host disease in patients undergoing reduced-intensity conditioning allogeneic hematopoietic stem cell transplant. Leuk Lymphoma 56:1058-65
Niederwieser, C; Kohlschmidt, J; Volinia, S et al. (2015) Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 29:567-75
Billingsley, Caroline C; Cohn, David E; Mutch, David G et al. (2015) Polymerase ? (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer 121:386-94
Krok-Schoen, Jessica L; Kurta, Michelle L; Weier, Rory C et al. (2015) Clinic type and patient characteristics affecting time to resolution after an abnormal cancer-screening exam. Cancer Epidemiol Biomarkers Prev 24:162-8
Biddle, Martha J; Lennie, Terry A; Bricker, Gregory V et al. (2015) Lycopene dietary intervention: a pilot study in patients with heart failure. J Cardiovasc Nurs 30:205-12
Jin, Ming; Roth, Rachel; Rock, Jonathan B et al. (2015) The impact of tumor deposits on colonic adenocarcinoma AJCC TNM staging and outcome. Am J Surg Pathol 39:109-15
Llanos, Adana A; Pennell, Michael L; Young, Gregory S et al. (2015) No association between colorectal cancer worry and screening uptake in Appalachian Ohio. J Public Health (Oxf) 37:322-7
Nguyen, Huyen T; Jia, Guang; Shah, Zarine K et al. (2015) Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging 41:1374-82
Berman-Booty, Lisa D; Thomas-Ahner, Jennifer M; Bolon, Brad et al. (2015) Extra-prostatic transgene-associated neoplastic lesions in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Toxicol Pathol 43:186-97
Pant, Shubham; Martin, Ludmila K; Geyer, Susan et al. (2014) Baseline serum albumin is a predictive biomarker for patients with advanced pancreatic cancer treated with bevacizumab: a pooled analysis of 7 prospective trials of gemcitabine-based therapy with or without bevacizumab. Cancer 120:1780-6

Showing the most recent 10 out of 1178 publications