The OSUCCC Microarray Shared Resource (MASR) was established as a """"""""developing"""""""" Shared Resource in 1998 with genome wide expression analysis, and subsequently became a full shared resource in 1999 offering genome wide expression analysis using Affymetrix GeneChips. In November 2004, under the direction of Dr. Cario Croce, the MASR underwent a massive expansion with an infusion of capital from the CCC's institutional resources. Dr. Croce developed and built the first microarray to study microRNAs which has now been utilized by a multitude of OSUCCC investigators, by CCC investigators from the NCI and other NCI-designated cancer centers and by investigators from around the world. In 2008, MASR acquired Agilent and Exiqon microarray platforms. The MASR has thus kept up with the dramatic expansion of demands for nucleic acid-based technologies in cancer research in order to serve CCC members with an outstanding range of expression analyses. For projects utilizing microarray technologies, MASR offers multiple unique, cost effective, and comprehensive state-of-the-art services and experience, including timely experimental design consultation, genome wide expression and SNP/mutation analysis on microarray and on next-generation instrumentation, array comparative genomic hybridization (CGH) assessment of DNA and RNA integrity, quantification of DNA and RNA, design, fabrication and validation of custom microarrays, quality sample processing, hybridization, and scanning. Microarray analysis supports studies of the diverse genetic profile of cancer including analysis of genomes, epigenomes and transcriptomes in murine and human systems including both normal and malignant tissues from cancer patients. MASR uses CAarray and trains investigators to upload results to Gene Expression Omnibus (http//www/ncbi.nim.nih.gov/geo). Through outstanding institutional support and leveraging of CCSG resources, MASR has developed into a robust centralized shared resource serving the needs of OSUCCC investigators, cancer researchers in the state of Ohio, and nationally with multiple NCI cancer centers. As predicted in our last review, regular usage of the MASR has grown by over 100%, in part the result of a $2.0 m in capital investment by the CCC into the MASR equipment using institutional support. During the past 12 months, the faculty and staff of the MASR have worked with 52 OSUCCC members coming from five of the six OSUCCC scientific programs. OSUCCC members with peer-reviewed funded accounted for 71.8% of the MASR usage;overall OSUCCC usage is 88.9%. These past 12 months indicate a continuous robust demand for MASR services and predict expanded demand for MASR services.

Public Health Relevance

The Microarray Shared Resource (MASR) offers unique, cost-effective, and timely technical and professional expertise that promotes high-quality science. Services include: timely experimental design consultation, genome wide expression and SNP/mutation analysis on microarray and on nextgeneration instrumentation, array comparative genomic hybridization (CGH) assessment of DNA and RNA integrity, quantification of DNA and RNA, design, fabrication and validation of custom microarrays, quality sample processing, hybridization, and scanning. Outstanding institutional support allows the MASR to contribute to cutting edge-cancer research that integrates OSUCCC investigations across the entire University, state of Ohio, and nationally with multiple NCI Cancer Centers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-38
Application #
8601819
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$156,606
Indirect Cost
$53,913
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Bolyard, Chelsea; Meisen, W Hans; Banasavadi-Siddegowda, Yeshavanth et al. (2017) BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection-Implications for Oncolytic Viral Therapy. Clin Cancer Res 23:1809-1819
Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L et al. (2017) Safety and efficacy of targeted hyperthermia treatment utilizing gold nanorod therapy in spontaneous canine neoplasia. BMC Vet Res 13:294
Kumar, Bhavna; Yadav, Arti; Brown, Nicole V et al. (2017) Nuclear PRMT5, cyclin D1 and IL-6 are associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with p16-status. Oncotarget 8:14847-14859
Miller, Cecelia R; Ruppert, Amy S; Fobare, Sydney et al. (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8:25942-25954
Pearlman, Rachel; Frankel, Wendy L; Swanson, Benjamin et al. (2017) Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol 3:464-471
Farren, Matthew R; Hennessey, Rebecca C; Shakya, Reena et al. (2017) The Exportin-1 Inhibitor Selinexor Exerts Superior Antitumor Activity when Combined with T-Cell Checkpoint Inhibitors. Mol Cancer Ther 16:417-427
Teng, Kun-Yu; Han, Jianfeng; Zhang, Xiaoli et al. (2017) Blocking the CCL2-CCR2 Axis Using CCL2-Neutralizing Antibody Is an Effective Therapy for Hepatocellular Cancer in a Mouse Model. Mol Cancer Ther 16:312-322
Russell, Luke; Bolyard, Chelsea; Banasavadi-Siddegowda, Yeshavanth et al. (2017) Sex as a biological variable in response to temozolomide. Neuro Oncol 19:873-874
Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A et al. (2017) Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis. Sci Rep 7:40814
Saporito, Donika; Brock, Pamela; Hampel, Heather et al. (2017) Penetrance of a rare familial mutation predisposing to papillary thyroid cancer. Fam Cancer :

Showing the most recent 10 out of 2211 publications