The Microscopy Shared Resource (MSR) is a centrally-located resource with cutting-edge instruments and highly trained experts to provide outstanding support for OSUCCC scientists for confocal, light, scanning electron and transmission electron microscopy, the MSR has two electron microscopes and four confocals all purchased since 2005 through federal grants and outstanding institutional support. These instruments include two single photon Olympus FVI 000 confocal microscopes each with four lasers and high N.A. objectives specifically for fixed cells and tissue, an FEI Tecnai BioTwin transmission electron microscope, and an Olympus FVI 000 multiphoton confocal instrument with a MaiTai DeepSee laser to probe deep into tumors in both live animals and fixed tissue. The MSR is led by Dr. Richard Burry, an established and well funded scientist with over 30 years of extensive expertise in microscopy, who along with an experienced and highly-trained staff, provides OSUCCC investigators vital consultation in experimental design and image analysis. Usage and productivity from the MSR is enhanced by well-organized training courses and individual training offered by staff members. The MSR is extensively used across OSUCCC scientific programs providing service to >30 OSUCCC member labs to generate the images for high quality cancer relevant publications and grants. The MSR is centrally located on the second floor of the Biomedical Research Tower (BRT) close to the labs of the OSUCCC members. Based on the expanding capabilities of the MSR and increases in number of grant applications from OSUCCC members, the OSUCCC usage is estimated to increase dramatically over the next five years based on strategic recruitment goals and expanded demand for high-end microscopy in cancer research. The MSR is supported by outstanding institutional resources by leveraging extensive partnerships with OSU Colleges, the OSU Office of Research, grants from the State of Ohio and the OSUCCC. The MSR is a new OSUCCC shared resource, previously with a strong user base as an OSU core facility, and thus fulfills NIH goals to consolidate core facilities for maximal efficiency and utilization by NIH funded investigators. Collectively the MSR is a critical shared resource for OSUCCC investigators seeking to identify specific cells and proteins in normal tissue and in tumors to enhance our understanding of fundamental processes of cancer in developing therapeutic strategies.

Public Health Relevance

The Microscopy Shared Resource (MSR) provides timely and high quality service to support OSUCCC investigators in a convenient, central location. Instrumentation and expert technical advice and training support a variety of sophisticated approaches in cancer research including: detection of viruses with transmission electron microscopy, examination of nanostructures for drug delivery with cryo-transmission electron microscopy, live cell imaging of cells in response to different treatments, multiple beam live cell confocal, reconstruction of pre-clinical breast tumor models using multiphoton microscopes, and following movement of immune cells in tumors of living animals with multiphoton microscopy. The MSR provides a vital shared resource for cancer investigators to translate cancer biology to new treatments against cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Fazio, Nicola; Buzzoni, Roberto; Baudin, Eric et al. (2016) A Phase II Study of BEZ235 in Patients with Everolimus-resistant, Advanced Pancreatic Neuroendocrine Tumours. Anticancer Res 36:713-9
Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando et al. (2016) Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces 141:74-82
Byrd, John C; Flynn, Joseph M; Kipps, Thomas J et al. (2016) Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. Blood 127:79-86
Datta, Jharna; Islam, Mozaffarul; Dutta, Samidha et al. (2016) Suberoylanilide hydroxamic acid inhibits growth of head and neck cancer cell lines by reactivation of tumor suppressor microRNAs. Oral Oncol 56:32-9
Wang, Hai; Agarwal, Pranay; Zhao, Shuting et al. (2016) Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials 97:62-73
Villalona-Calero, Miguel A; Duan, Wenrui; Zhao, Weiqiang et al. (2016) Veliparib Alone or in Combination with Mitomycin C in Patients with Solid Tumors With Functional Deficiency in Homologous Recombination Repair. J Natl Cancer Inst 108:
Rai, K; Pilarski, R; Cebulla, C M et al. (2016) Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet 89:285-94
Kerrigan, Kathleen; Shoben, Abigail; Otterson, Gregory (2016) Treatment of Lung Cancer Patients With Actionable Mutations in the Intensive Care Unit. Clin Lung Cancer 17:523-527
DiSilvestro, David J; Melgar-Bermudez, Emiliano; Yasmeen, Rumana et al. (2016) Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice. PLoS One 11:e0153198
Terakawa, Jumpei; Rocchi, Altea; Serna, Vanida A et al. (2016) FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol 30:783-95

Showing the most recent 10 out of 1929 publications