CORE-013: PROTEOMICS SHARED RESOURCE (PSR) PROJECT SUMMARY / ABSTRACT The OSUCCC Proteomics Shared Resource (PSR) provides CCSG investigators access to advanced mass spectrometry (MS) instrumentation, ancillary instrumentation for sample preparation, and expert staff to enable proteomic research, including data analysis. Two tenured faculty experts in mass spectrometry and proteomics, Drs. Michael Freitas (MBCG) and Vicki Wysocki, serve as PSR Director and Senior Faculty Advisor, respectively. They provide scientific leadership to the PSR with expertise in cancer proteomics, protein chemistry, bioinformatics, and mass spectroscopy methods development. The PSR offers numerous proteomics services to users that fall under the categories of protein identification, characterization, and quantification. The ability to confidently identify proteins is the central role of the PSR. Examples of protein characterization analysis include: identification of post-translational modifications, alternate splice forms, de novo protein sequencing and protein-protein interaction analysis.
The Specific Aims of the PSR are to: 1) provide advanced mass spectrometry based proteomics services; 2) provide innovative proteomic data analytics and bioinformatics platforms; and, 3) provide consultations with investigators on experiment design and train users on the operation of several self-operated MS instruments within the shared resource. Over the last grant period, there have been substantial upgrades to equipment in the PSR. Early in the grant period, three mass spectrometers were acquired with the help of federally funded awards: a Bruker Maxis Q-TOF, a Bruker UltrafleXtreme MALDI TOF-TOF, and a Bruker AmaZon ion trap with electron transfer dissociation (ETD). This year, three additional mass spectrometers, two high-end instruments (a Thermo Orbitrap Fusion and a Bruker 15 T FTICR along with a Thermo Quantiva triple quadrupole for targeted (MRM) analyses) are to be installed in the PSR with funding from two NIH S10 awards and also OSUCCC and other institutional support. These state-of-the-art MS instruments will improve services offered to OSUCCC members by providing significantly higher throughput shotgun proteomics, improved post-translational modification analysis, improved isotopic fine structure analysis for metabolomics, and greater capacity and data quality. The PSR has supported 37 OSUCCC members from all five OSUCCC research programs including 1 K24, 1 N01, 8 P01s, 2 P50s, 19 R01s, 8 R21s, 2 RC2s, 1 T32, and 2 U01s. The PSR has also contributed to over 74 OSUCCC member publications during the last grant period, 11 of which were in publications with a journal impact factor >10. The future plans for the PSR involve a constant effort to develop and adopt new innovative techniques and methods for protein analysis, and to acquire state-of-the-art mass spectrometry and chromatography instrumentation. Specifically, the PSR will fully integrate the 3 recently purchased major instruments, to introduce methods for 2-dimensional and 3-dimensional chromatography, and provide proteogenomics data integration. The PSR leverages extensive institutional support, and seeks only 14.2% support from CCSG funds. The Proteomics Shared Resource is part of the Analytics Grouping.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-43
Application #
9632727
Study Section
Subcommittee I - Career Development (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Bolyard, Chelsea; Meisen, W Hans; Banasavadi-Siddegowda, Yeshavanth et al. (2017) BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection-Implications for Oncolytic Viral Therapy. Clin Cancer Res 23:1809-1819
Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L et al. (2017) Safety and efficacy of targeted hyperthermia treatment utilizing gold nanorod therapy in spontaneous canine neoplasia. BMC Vet Res 13:294
Kumar, Bhavna; Yadav, Arti; Brown, Nicole V et al. (2017) Nuclear PRMT5, cyclin D1 and IL-6 are associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with p16-status. Oncotarget 8:14847-14859
Miller, Cecelia R; Ruppert, Amy S; Fobare, Sydney et al. (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8:25942-25954
Pearlman, Rachel; Frankel, Wendy L; Swanson, Benjamin et al. (2017) Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol 3:464-471
Farren, Matthew R; Hennessey, Rebecca C; Shakya, Reena et al. (2017) The Exportin-1 Inhibitor Selinexor Exerts Superior Antitumor Activity when Combined with T-Cell Checkpoint Inhibitors. Mol Cancer Ther 16:417-427
Teng, Kun-Yu; Han, Jianfeng; Zhang, Xiaoli et al. (2017) Blocking the CCL2-CCR2 Axis Using CCL2-Neutralizing Antibody Is an Effective Therapy for Hepatocellular Cancer in a Mouse Model. Mol Cancer Ther 16:312-322
Russell, Luke; Bolyard, Chelsea; Banasavadi-Siddegowda, Yeshavanth et al. (2017) Sex as a biological variable in response to temozolomide. Neuro Oncol 19:873-874
Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A et al. (2017) Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis. Sci Rep 7:40814
Saporito, Donika; Brock, Pamela; Hampel, Heather et al. (2017) Penetrance of a rare familial mutation predisposing to papillary thyroid cancer. Fam Cancer :

Showing the most recent 10 out of 2211 publications