CORE-013: PROTEOMICS SHARED RESOURCE (PSR) PROJECT SUMMARY / ABSTRACT The OSUCCC Proteomics Shared Resource (PSR) provides CCSG investigators access to advanced mass spectrometry (MS) instrumentation, ancillary instrumentation for sample preparation, and expert staff to enable proteomic research, including data analysis. Two tenured faculty experts in mass spectrometry and proteomics, Drs. Michael Freitas (MBCG) and Vicki Wysocki, serve as PSR Director and Senior Faculty Advisor, respectively. They provide scientific leadership to the PSR with expertise in cancer proteomics, protein chemistry, bioinformatics, and mass spectroscopy methods development. The PSR offers numerous proteomics services to users that fall under the categories of protein identification, characterization, and quantification. The ability to confidently identify proteins is the central role of the PSR. Examples of protein characterization analysis include: identification of post-translational modifications, alternate splice forms, de novo protein sequencing and protein-protein interaction analysis.
The Specific Aims of the PSR are to: 1) provide advanced mass spectrometry based proteomics services; 2) provide innovative proteomic data analytics and bioinformatics platforms; and, 3) provide consultations with investigators on experiment design and train users on the operation of several self-operated MS instruments within the shared resource. Over the last grant period, there have been substantial upgrades to equipment in the PSR. Early in the grant period, three mass spectrometers were acquired with the help of federally funded awards: a Bruker Maxis Q-TOF, a Bruker UltrafleXtreme MALDI TOF-TOF, and a Bruker AmaZon ion trap with electron transfer dissociation (ETD). This year, three additional mass spectrometers, two high-end instruments (a Thermo Orbitrap Fusion and a Bruker 15 T FTICR along with a Thermo Quantiva triple quadrupole for targeted (MRM) analyses) are to be installed in the PSR with funding from two NIH S10 awards and also OSUCCC and other institutional support. These state-of-the-art MS instruments will improve services offered to OSUCCC members by providing significantly higher throughput shotgun proteomics, improved post-translational modification analysis, improved isotopic fine structure analysis for metabolomics, and greater capacity and data quality. The PSR has supported 37 OSUCCC members from all five OSUCCC research programs including 1 K24, 1 N01, 8 P01s, 2 P50s, 19 R01s, 8 R21s, 2 RC2s, 1 T32, and 2 U01s. The PSR has also contributed to over 74 OSUCCC member publications during the last grant period, 11 of which were in publications with a journal impact factor >10. The future plans for the PSR involve a constant effort to develop and adopt new innovative techniques and methods for protein analysis, and to acquire state-of-the-art mass spectrometry and chromatography instrumentation. Specifically, the PSR will fully integrate the 3 recently purchased major instruments, to introduce methods for 2-dimensional and 3-dimensional chromatography, and provide proteogenomics data integration. The PSR leverages extensive institutional support, and seeks only 14.2% support from CCSG funds. The Proteomics Shared Resource is part of the Analytics Grouping.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-43
Application #
9632727
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Qian, Maoxiang; Cao, Xueyuan; Devidas, Meenakshi et al. (2018) TP53 Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. J Clin Oncol 36:591-599
Myers, Regina M; Hill, Brian T; Shaw, Bronwen E et al. (2018) Long-term outcomes among 2-year survivors of autologous hematopoietic cell transplantation for Hodgkin and diffuse large b-cell lymphoma. Cancer 124:816-825
Nemeth, Julianna M; Thomson, Tiffany L; Lu, Bo et al. (2018) A social-contextual investigation of smoking among rural women: multi-level factors associated with smoking status and considerations for cessation. Rural Remote Health 18:4338
Mace, Thomas A; Shakya, Reena; Pitarresi, Jason R et al. (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67:320-332
Massengill, James B; Sample, Klarke M; Pilarski, Robert et al. (2018) Analysis of the exome aggregation consortium (ExAC) database suggests that the BAP1-tumor predisposition syndrome is underreported in cancer patients. Genes Chromosomes Cancer 57:478-481
Buteyn, Nathaniel J; Fatehchand, Kavin; Santhanam, Ramasamy et al. (2018) Anti-leukemic effects of all-trans retinoic acid in combination with Daratumumab in acute myeloid leukemia. Int Immunol 30:375-383
Orchard, Tonya S; Andridge, Rebecca R; Yee, Lisa D et al. (2018) Diet Quality, Inflammation, and Quality of Life in Breast Cancer Survivors: A Cross-Sectional Analysis of Pilot Study Data. J Acad Nutr Diet 118:578-588.e1
Reiff, Sean D; Mantel, Rose; Smith, Lisa L et al. (2018) The BTK Inhibitor ARQ 531 Targets Ibrutinib-Resistant CLL and Richter Transformation. Cancer Discov 8:1300-1315
Herman, Joseph M; Jabbour, Salma K; Lin, Steven H et al. (2018) Smad4 Loss Correlates With Higher Rates of Local and Distant Failure in Pancreatic Adenocarcinoma Patients Receiving Adjuvant Chemoradiation. Pancreas 47:208-212
Pi, Fengmei; Binzel, Daniel W; Lee, Tae Jin et al. (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13:82-89

Showing the most recent 10 out of 2602 publications