The Biological Macromolecule Shared Resource (BMSR) represents a consolidation of services previously offered by the Molecular Biology and the Virus Vector shared resources, with the addition of a new service for recombinant protein production and purification. The overall goal of the BMSR is to facilitate and implement multiple end-points, both those within this shared resource, and those involving interfacing with other shared resources. These include the production of research grade virus particles, knock-in/knock-out mice (in collaboration with the Transgenic/Knockout Mouse Shared Resource), knock-in/knock-out somatic cell lines using homologous recombination, transient and stable protein expression in mammalian cells, recombinant protein production (bacterial, yeast, insect, and mammalian systems) and purification for structural analysis (in collaboration with the Structural Biology Shared Resource), and for protein interaction studies using the Biacore instrumentation located in the Flow Cytometry shared resource. In addition to moving vectors provided by investigators towards these end points, we offer design, construction and validation services for the generation of new vectors. The BMSR is co-directed by Dr Shirley Taylor (CMG), who brings molecular biology, cell culture, and protein expression experience, and Dr Darrell Peterson (Department of Biochemistry and Molecular Biology) a protein biochemist with extensive experience in protein production and purification. The BMSR employs a Resource Manager (Ms Kimberly Stratton, MS) and two full time research specialists, each of whom takes primary responsibility for one of the three major areas, but with sufficient cross-training in ail services offered to ensure continuity and maximal efficiency. The BMSR generally operates at >85% capacity, serving a wide range of investigators both within the Virginia Commonwealth University (VCU) Massey Cancer Center (MCC), and from the VCU research community. For the period January 1 2008 through December 31, 2010, MCC members with peer-reviewed funding accounted for approximately 70% of basic services and special projects. In CY 2010 the virus vector services of the BMSR served five funded MCC investigators, and three non-MCC investigators. Since its inception in January 2010, the Protein Production facility has served five funded MCC investigators and two non-MCC investigators, on ten separate projects. The BMSR served 22 peer-reviewed funded MCC investigators in routine services and special projects and 15 non-MCC investigators.

Public Health Relevance

The Biological Macromolecule Shared Resource assists MCC investigators in creating both DNA and protein molecules which in turn are used to study the molecular nature of cancer. Molecular manipulation provides the tools by which individual genes and proteins can be studied at the cellular and organismal levels. The production of purified protein allows investigators to determine the structure of cancer-related molecules, which in turn lends itself to understanding how the proteins can be manipulated to control cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016059-31
Application #
8299688
Study Section
Subcommittee G - Education (NCI)
Project Start
1978-12-01
Project End
2017-04-30
Budget Start
2012-08-30
Budget End
2013-04-30
Support Year
31
Fiscal Year
2012
Total Cost
$61,177
Indirect Cost
$20,929
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Yamada, Akimitsu; Nagahashi, Masayuki; Aoyagi, Tomoyoshi et al. (2018) ABCC1-Exported Sphingosine-1-phosphate, Produced by Sphingosine Kinase 1, Shortens Survival of Mice and Patients with Breast Cancer. Mol Cancer Res 16:1059-1070
Cantwell, Marc T; Farrar, Jared S; Lownik, Joseph C et al. (2018) STAT3 suppresses Wnt/?-catenin signaling during the induction phase of primary Myf5+ brown adipogenesis. Cytokine 111:434-444
Aqbi, Hussein F; Wallace, Matthew; Sappal, Samay et al. (2018) IFN-? orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J Leukoc Biol :
Volker, Sonja E; Hedrick, Shannon E; Feeney, Yvonne B et al. (2018) Cyclophilin A Function in Mammary Epithelium Impacts Jak2/Stat5 Signaling, Morphogenesis, Differentiation, and Tumorigenesis in the Mammary Gland. Cancer Res 78:3877-3887
Li, Xiaojiaoyang; Liu, Runping; Huang, Zhiming et al. (2018) Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 68:599-615
Durant, Stephen T; Zheng, Li; Wang, Yingchun et al. (2018) The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv 4:eaat1719
Damle, S R; Martin, R K; Cockburn, C L et al. (2018) ADAM10 and Notch1 on murine dendritic cells control the development of type 2 immunity and IgE production. Allergy 73:125-136
Wang, Feng; Li, Hongyan; Markovsky, Ela et al. (2018) Pazopanib radio-sensitization of human sarcoma tumors. Oncotarget 9:9311-9324
Stokes, Nancy A; Stanciu, Cristina E; Brocato, Emily R et al. (2018) Simplification of complex DNA profiles using front end cell separation and probabilistic modeling. Forensic Sci Int Genet 36:205-212
Poklepovic, Andrew; Qu, Yuesheng; Dickinson, Molly et al. (2018) Randomized study of doxorubicin-based chemotherapy regimens, with and without sildenafil, with analysis of intermediate cardiac markers. Cardiooncology 4:

Showing the most recent 10 out of 586 publications