The Structural Biology Shared Resource (SBSR) offers instrumentation, computer hardware and software and support personnel for the determination of molecular structures and the utilization of structural information in cancer research. The shared resource encompasses three related components: molecular modeling. X-ray crystallography, and nuclear magnetic resonance (NMR). These facilities are clustered in dedicated space to facilitate access and consultation with the support team. The molecular modeling and X-ray crystallography facilities are co-located at a site that houses faculty with shared interests in the application of the methods of structural biology. The molecular modeling facility consists of 16 graphics workstations and software/data base suites which include Sybyl, Unity, MOLCAD, Dock, GRID, HEX,HINT, GOLD, FlexX and additional software and structural data bases providing a comprehensive collection of modeling/analysis and programming software. X-ray crystallographic resources include a Rigaku Raxis-IV++ imaging plate system, Microl^ax-007 high frequency rotating anode. Blue Max-Flux Confocal optical system, x-stream cryogenic system, RAXIS-IV++ 29 stage and Windows-based CrystalClear software for data acquisition and processing. These resources are complemented by a didactic course in modeling and other training mechanisms with the goal of enhancing access to structural data and collaborations by the general Virginia Commonwealth University (VCU) Massey Cancer Center (MCC) member community. The NMR facility houses a recently acquired Bruiser Avance III 700 MHz instrument specifically equipped for macromolecular investigations. The molecular modeling resources can be accessed by the user community at any time. The X-ray diffractometer use is based on a unit of one day with 151 days of utilization available for the six month period, allowing for maintenance and down time;for the NMR, use is based on a unit of one day with 151 days of data acquisition time available for the six month period, allowing for maintenance and development time. Overall utilization for the X-ray diffractometer over the twelve month period was 36% of capacity;for the NMR utilization was 14% of capacity. These resources empower the investigators of the MCC with the ability to determine the structure of macromolecules involved in key mechanisms and assess the potential efficacy of therapeutic agents relevant to control of cancer.

Public Health Relevance

Knowledge of the structure of biological molecules provides investigators with knowledge as to how the molecules work and how drugs might be developed which would interfere with the working of the molecule. The Structural Biology Shared Resource provides the necessary tools for determining molecular structure, and the necessary software for studying the structure of the molecules.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016059-32
Application #
8559567
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
32
Fiscal Year
2013
Total Cost
$19,868
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Ginder, Gordon D (2015) Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 165:115-25
Chen, Shuang; Zhang, Yu; Zhou, Liang et al. (2014) A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood 124:2687-97
Youniss, Fatma M; Sundaresan, Gobalakrishnan; Graham, Laura J et al. (2014) Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS One 9:e109162
Teves, Maria E; Sears, Patrick R; Li, Wei et al. (2014) Sperm-associated antigen 6 (SPAG6) deficiency and defects in ciliogenesis and cilia function: polarity, density, and beat. PLoS One 9:e107271
Bie, Jinghua; Wang, Jing; Yuan, Quan et al. (2014) Liver-specific transgenic expression of cholesteryl ester hydrolase reduces atherosclerosis in Ldlr-/- mice. J Lipid Res 55:729-38
Teramachi, Jumpei; Zhou, Hua; Subler, Mark A et al. (2014) Increased IL-6 expression in osteoclasts is necessary but not sufficient for the development of Paget's disease of bone. J Bone Miner Res 29:1456-65
Nakagawa, Akito; Lui, Francine E; Wassaf, Dina et al. (2014) Identification of a small molecule that increases hemoglobin oxygen affinity and reduces SS erythrocyte sickling. ACS Chem Biol 9:2318-25
Sarkar, S; Azab, B; Quinn, B A et al. (2014) Chemoprevention gene therapy (CGT) of pancreatic cancer using perillyl alcohol and a novel chimeric serotype cancer terminator virus. Curr Mol Med 14:125-40
Dhall, Sandeep; Do, Danh; Garcia, Monika et al. (2014) A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. PLoS One 9:e109848
Rahmani, Mohamed; Aust, Mandy Mayo; Benson, Elisa C et al. (2014) PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res 20:4849-60

Showing the most recent 10 out of 215 publications