Proteomics Core Facility The Proteomics Core strives to provide outstanding mass spectrometry-based service and training to Cancer Center researchers. The core provides state-of-the-art analysis for protein identification from mixtures of proteins;defining post-translational modifications (i.e. phosphorylation, acetylation, ubiquitination);and quantitative analysis of changes in protein expression or modification using methods such as SILAC and ITRAQ, The core works with investigators to ensure use of the best proteomic applications for design of experimental protocols needed to answer important cancer biology-related questions and provides a unique training environment for students and fellows. Highlights of proteomic research supported by the core include papers In Cell (Salmon), Nature (Zhang), PNAS (Whang) and Molecular and Cellular Biology (Burridge, Marzluff, Patterson). The core is led by three Ph.D. scientists with extensive proteomics experience: Drs. Lee Graves (Faculty Director), Maria Hines (Facility Director) and Xian Chen (Technology Development Director). Core usage has steadily increased and reflects the fundamental need to understand proteome dynamics at an ever increasing level of sophistication. The Institution and Cancer Center has provided more than $2.5 million dollars in the past five years for new mass spectrometry and nano-LC instrumentation. The core continues to increase its capacity to perform high-throughput large scale, quantitative proteomics. To accomplish these objectives, CCSG support of $144,563 is proposed, which is approximately 30% of the projected Proteomics Core operating costs for 2010. In 2009, the core was used by 46 cancer center members (100% peer-reviewed), accounting for 86% of total core usage. The proposed budget will partially support salaries of six core personnel and sen/ice contracts for mass spectrometers. This is an approximate 19% increase in CCSG support that is needed for the expansion of large scale high-throughput, quantitative proteomics. Future plans involve expanding the mass spectrometry-based infrastructure with an additional LTQ Orbitrap for support of state-of-the-art quantitative proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA016086-36S1
Application #
8532536
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
36
Fiscal Year
2012
Total Cost
$2,552
Indirect Cost
$873
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Ziehr, Benjamin; Vincent, Heather A; Moorman, Nathaniel J (2016) Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication. J Virol 90:3839-48
Xiao, Ping-Jie; Mitchell, Angela M; Huang, Lu et al. (2016) Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction. Hum Gene Ther 27:309-24
White, Alexandra J; Bradshaw, Patrick T; Herring, Amy H et al. (2016) Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int 89-90:185-92
Xu, Yang; Chaudhury, Arindam; Zhang, Ming et al. (2016) Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest 126:2678-88
He, Zhijian; Wan, Xiaomeng; Schulz, Anita et al. (2016) A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296-309
Moracco, Kathryn E; Morgan, Jennifer C; Mendel, Jennifer et al. (2016) "My First Thought was Croutons": Perceptions of Cigarettes and Cigarette Smoke Constituents Among Adult Smokers and Nonsmokers. Nicotine Tob Res 18:1566-74
Park, Eliza M; Deal, Allison M; Check, Devon K et al. (2016) Parenting concerns, quality of life, and psychological distress in patients with advanced cancer. Psychooncology 25:942-8
Ohkuni, Kentaro; Takahashi, Yoshimitsu; Fulp, Alyona et al. (2016) SUMO-Targeted Ubiquitin Ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Mol Biol Cell :
Becker, Marc A; Ibrahim, Yasir H; Oh, Annabell S et al. (2016) Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS One 11:e0150564
Sin, Sang-Hoon; Kang, Sun Ah; Kim, Yongbaek et al. (2016) Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Compensates for Interleukin-6 in Initial B Cell Activation. J Virol 90:2150-4

Showing the most recent 10 out of 897 publications