Small Animal Imaging Core Facility The goal of the Small Animal Imaging (SAI) core is to provide advanced animal imaging services, including imaging acquisition and image analysis tools that will facilitate cancer research at UNC and beyond. The imaging ability provided by the core allowed sophisticated monitoring of animal models, especially for studies focusing on cancer etiology and molecular therapeutics. The SAI core currently houses 10 imaging devices, including two 3T Siemens MR scanners, a 9.4T Bruker small animal MR scanner, a GE Explore animal PET/CT scanner, a UNC-designed high resolution SPECT scanner, a high resolution microCT for specimens (SCANCO), a high frequency ultrasound system (VisualSonics), and three IVIS optical imaging systems with capability for both bioluminescence and fluorescence imaging. Three additional imaging devices will be added to the SAI core in 2010: a GE SPECT/CT, a Fluorescence Molecular Tomography system, and a novel carbon nanotube-based CT. The SAI core currently supports 54 research projects. The SAI core requests $115,958 in CCSG funds, representing 12% its operating costs;63% of the core's use is allocated to Cancer Center members. The increase in funding is requested to support the additional personnel and service contracts for new imaging equipment. For the next funding cycle, the SAI core proposes two major goals: expanding imaging, education and training services and developing multimodality imaging technology and analysis.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Joseph, Sarah B; Arrildt, Kathryn T; Sturdevant, Christa B et al. (2015) HIV-1 target cells in the CNS. J Neurovirol 21:276-89
Sikov, William M; Berry, Donald A; Perou, Charles M et al. (2015) Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (A J Clin Oncol 33:13-21
Blazer, Marlo; Wu, Christina; Goldberg, Richard M et al. (2015) Neoadjuvant modified (m) FOLFIRINOX for locally advanced unresectable (LAPC) and borderline resectable (BRPC) adenocarcinoma of the pancreas. Ann Surg Oncol 22:1153-9
Knight, E R W; Patel, E Y; Flowers, C A et al. (2015) ASC deficiency suppresses proliferation and prevents medulloblastoma incidence. Oncogene 34:394-402
Dellon, Evan S; Speck, Olga; Woodward, Kimberly et al. (2015) Distribution and variability of esophageal eosinophilia in patients undergoing upper endoscopy. Mod Pathol 28:383-90
Qi, Qibin; Kilpeläinen, Tuomas O; Downer, Mary K et al. (2014) FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum Mol Genet 23:6961-72
Jha, Deepak Kumar; Strahl, Brian D (2014) An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun 5:3965
Guo, Shutao; Lin, C Michael; Xu, Zhenghong et al. (2014) Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano 8:4996-5009
Clark, Martha A; Goheen, Morgan M; Spidale, Nicholas A et al. (2014) RBC barcoding allows for the study of erythrocyte population dynamics and P. falciparum merozoite invasion. PLoS One 9:e101041
Zhang, Weihe; DeRyckere, Deborah; Hunter, Debra et al. (2014) UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J Med Chem 57:7031-41

Showing the most recent 10 out of 292 publications