Genomics Core Facility The goal of the Genomics Core Facility (GCF) is to make genomic analysis products and services widely available to UNC LCCC members at cost-effective prices. Services include: producing low-cost custom microarrays for model organisms;analysis of RNA quality;support of the use of Agilent and Affymetrix gene expression microarrays and aCGH and microRNA microarrays;RNAi screening services;assisting with experimental design and analyzing results;archiving of both Agilent and Affimetrix array data;providing web based pathway analysis software;and providing """"""""walk-up"""""""" quantitative PCR analysis. The Core adds value to the Center by making accessible complex and expensive DNA technologies to UNC LCCC members. Well-integrated genomics and bioinformatics groups interact with the microarray user to ensure robust data that is archived appropriately for future use. Highlights of research supported by the Core include: Jen Jen Yeh's profiling studies of gene expression in pancreatic cancers, Charles Perou's profiling of cancer gene expression and the effects of cancer therapeutics, and characterization of gene expression in a wide range of tumor types in support of the Cancer Genome Atlas (TCGA) Project. This year and next will see major changes. The Bioinformatics group, while remaining fully integrated, functionally is evolving into a separate core with multiple functions. The Genomics Core is also expanding to offer new techniques, including mapping of methylation sites, preparation of cDNA libraries from mRNA for mRNA-seq by the NexGen sequencing core;continuing development of an RNAi High-throughput Screening facility for functional genomics studies;and offering Nanostring technology for multiplex quantitative measurement of mRNA without amplification. Lastly, the Agilent and Affimetrix microarray components will be physically consolidated in newly renovated space with the DNA Sequencing, Mammalian Genotyping, and High Throughput (Next-Generation) Sequencing Facility. This will enable the cores to more fully integrate and flexibly service users. In 2009, the core was used by 91 investigators. Peer-review funded members accounted for 87% of total core use. Fifty-five Cancer Center members from eight programs used the core. CCSG funding of $167,411 is requested for 2010, representing 10% of the projected operating costs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-38
Application #
8594164
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$212,220
Indirect Cost
$66,183
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lim, Joseph K; Liapakis, Ann Marie; Shiffman, Mitchell L et al. (2018) Safety and Effectiveness of Ledipasvir and Sofosbuvir, With or Without Ribavirin, in Treatment-Experienced Patients With Genotype 1 Hepatitis C Virus Infection and Cirrhosis. Clin Gastroenterol Hepatol 16:1811-1819.e4
Wang, Gary P; Terrault, Norah; Reeves, Jacqueline D et al. (2018) Prevalence and impact of baseline resistance-associated substitutions on the efficacy of ledipasvir/sofosbuvir or simeprevir/sofosbuvir against GT1 HCV infection. Sci Rep 8:3199
Phillips, Bonnie; Van Rompay, Koen K A; Rodriguez-Nieves, Jennifer et al. (2018) Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. J Virol 92:
Lianga, Noel; Doré, Carole; Kennedy, Erin K et al. (2018) Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genet 14:e1007029
Allott, Emma H; Geradts, Joseph; Cohen, Stephanie M et al. (2018) Frequency of breast cancer subtypes among African American women in the AMBER consortium. Breast Cancer Res 20:12
Dhungel, Bal Mukunda; Montgomery, Nathan D; Painschab, Matthew S et al. (2018) 'Discovering' primary effusion lymphoma in Malawi. AIDS 32:2264-2266
Cameron, Jennifer E; Rositch, Anne F; Vielot, Nadja A et al. (2018) Epstein-Barr Virus, High-Risk Human Papillomavirus and Abnormal Cervical Cytology in a Prospective Cohort of African Female Sex Workers. Sex Transm Dis 45:666-672
Stanley, Christopher C; van der Gronde, Toon; Westmoreland, Kate D et al. (2018) Risk factors and reasons for treatment abandonment among children with lymphoma in Malawi. Support Care Cancer 26:967-973
Dronamraju, Raghuvar; Jha, Deepak Kumar; Eser, Umut et al. (2018) Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity. Nucleic Acids Res 46:1331-1344
Koehler, Jennifer W; Miller, Andrew D; Miller, C Ryan et al. (2018) A Revised Diagnostic Classification of Canine Glioma: Towards Validation of the Canine Glioma Patient as a Naturally Occurring Preclinical Model for Human Glioma. J Neuropathol Exp Neurol 77:1039-1054

Showing the most recent 10 out of 1525 publications