Bioinformatics is critical for any cancer center, allowing researchers to tap the ever-growing data sets afforded by new cancer research technologies. However daunting, massive data sets are being created, must be analyzed, and need to be related to translafional and clinical end points. LCCC expertise in this area began with the genomics program, particularly gene expression microarray analysis. By necessity, the personnel, computafional infrastructure, and broad faculty expertise was built through internal and external recruitment. In the last three years, capabilifies rapidly expanded to capture clinical data and annotate specimens. The Lineberger Data Warehouse (LDW) was created to allow Interactive use of mulfiple oracle based data repositories. With this expanded staff and mission, the genomics and bioinformatics were divided into two resources. The relafionships between the Bioinformatics, Biostatisfics and Data Management, Genomics and the new Next Generafion and Genotyping Core will be seamless. The Bioinformafic Core's goals are to confinue to provide bioinformafics tools, databases for the storage and analysis of genomic data, for the storage and analysis of clinical/pafient data, and to provide tools to link these disfinct data types together to foster translational research discoveries. Incorporafion of new enfifies, such as the Cancer Survivorship Cohort, is occurring. The key element remains the Bioinformafics Core Central Patient Registry which provides and tracks all pafients after assigning a unique research identifier. The group has significant experience with genomic database development and curation, genomic data analysis and tool development, clinical database development, and linking these together through the LDW. The core will expand capabilifies to include new genomic plafi'orms and new clinical databases/tumor types. The core requests $270,568, representing 13% of its total operating costs to accomplish its ambitious goals. All core use in 2009 was by members. The co-directors, Drs. Perou and Hayes, are leaders in genomic analysis and its integration with clinical endpoints.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-38
Application #
8594166
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$255,335
Indirect Cost
$66,183
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Aung, Kyaw L; Fischer, Sandra E; Denroche, Robert E et al. (2018) Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clin Cancer Res 24:1344-1354
Suh, Junghyun L; Watts, Brian; Stuckey, Jacob I et al. (2018) Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1. Biochemistry 57:2140-2149
Brock, William J; Beaudoin, James J; Slizgi, Jason R et al. (2018) Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. Int J Toxicol 37:144-154
Thomas, Nancy E; Edmiston, Sharon N; Tsai, Yihsuan S et al. (2018) Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis. Am J Dermatopathol :
Bensen, Jeannette T; Graff, Mariaelisa; Young, Kristin L et al. (2018) A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Res 20:45
Hall, Marissa G; Marteau, Theresa M; Sunstein, Cass R et al. (2018) Public support for pictorial warnings on cigarette packs: an experimental study of US smokers. J Behav Med 41:398-405
Ma, Shaohua; Paiboonrungruan, Chorlada; Yan, Tiansheng et al. (2018) Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Ann N Y Acad Sci 1434:164-172
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10
Myung, Ja Hye; Eblan, Michael J; Caster, Joseph M et al. (2018) Multivalent Binding and Biomimetic Cell Rolling Improves the Sensitivity and Specificity of Circulating Tumor Cell Capture. Clin Cancer Res 24:2539-2547
Lindström, Linda S; Yau, Christina; Czene, Kamila et al. (2018) Intratumor Heterogeneity of the Estrogen Receptor and the Long-term Risk of Fatal Breast Cancer. J Natl Cancer Inst 110:726-733

Showing the most recent 10 out of 1525 publications