The Cancer Genetics Program within the UNC Lineberger Comprehensive Cancer Center (LCCC) was established in 2001 to facilitate an integrated, multi-disciplinary approach to research and clinical care. It is comprised of laboratory-based investigators, statistical geneticists, researchers and clinicians, all focused on improving our understanding and treatment of cancer. By integrating the multiple strengths of UNC, ranging from basic science to clinical genomic analysis, the LCCC Genetics Program has become a world leader in using genome-scale sequencing technology to address critical clinical questions related to cancer. Treatments will increasingly be tailored to an individual's genomic constitution and genomic characteristics of their tumor, mitigating toxicity and enhancing efficacy through individually tailored treatment and precise targeting of the mutations that drive tumor propagation. We have developed a comprehensive program that includes: (i) utilizing diverse experimental organisms from yeast, worm and mouse, to cell-based systems and ultimately human populations with the overarching goal of identifying mechanisms that result in genomic changes and the specific lesions responsible for cancer phenotypes; (ii) use of Whole Genome, Whole Exome and Whole Transcriptome Sequencing (WGS/WES/WTS) as effective diagnostic tools; (iii) facilitating the effective use of genomic information by patients and providers through structured categorization of genomic variation based upon clinical validity and utility; (iv) a state-of-the-art informatics approach that incorporates generation, analysis, and management of genomic data with coupling of genomic and clinical information to drive both clinical testing and translational research; (v) development of ethical and practical policies for the use of WGS data by both patients and clinicians; and (vi) exploration of massively parallel sequencing in a public health context through sequencing of selected, highly actionable genes in members of the general population for cancer-prevention purposes. Our vision has been realized through value added LCCC resources for strategic recruitment of faculty in emerging fields, investment in cutting-edge technology, enhanced organizational capability for integrative analysis and the securing of significant federal funding to enable the application of genomics to diverse aspects of cancer care and prevention. This unified and integrated effort ensures that insights gained through basic research do not linger in the lab but will lead directly as possible to application in humans. Such an integrated approach is critical for understanding the genesis, progression, and treatment of cancer. There are 29 program members from 10 different departments (6 departments in the School of Medicine, 2 in the School of Public Health, 2 in the College of Arts and Sciences). During the last funding period, program members have published 627 cancer-related articles (36% collaborative). In 2014, our program members held 51 grants and $25.7 (total cost) in annual extramural funding, including 12 grants and $4.7M (total costs) from the NCI.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-43
Application #
9614926
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Anderson, Chelsea; Smitherman, Andrew B; Nichols, Hazel B (2018) Conditional relative survival among long-term survivors of adolescent and young adult cancers. Cancer 124:3037-3043
Liu, Meng-Xi; Jin, Lei; Sun, Si-Jia et al. (2018) Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene 37:1637-1653
Curtis 2nd, Alan D; Jensen, Kara; Van Rompay, Koen K A et al. (2018) A simultaneous oral and intramuscular prime/sublingual boost with a DNA/Modified Vaccinia Ankara viral vector-based vaccine induces simian immunodeficiency virus-specific systemic and mucosal immune responses in juvenile rhesus macaques. J Med Primatol 47:288-297
Williams, Lindsay A; Nichols, Hazel B; Hoadley, Katherine A et al. (2018) Reproductive risk factor associations with lobular and ductal carcinoma in the Carolina Breast Cancer Study. Cancer Causes Control 29:25-32
Amunugama, Ravindra; Willcox, Smaranda; Wu, R Alex et al. (2018) Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Rep 23:3419-3428
Little, Michael S; Pellock, Samuel J; Walton, William G et al. (2018) Structural basis for the regulation of ?-glucuronidase expression by human gut Enterobacteriaceae. Proc Natl Acad Sci U S A 115:E152-E161
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Erratum: Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 556:135
Dellon, Evan S; Selitsky, Sara R; Genta, Robert M et al. (2018) Gene expression-phenotype associations in adults with eosinophilic esophagitis. Dig Liver Dis 50:804-811
Rojas, Juan D; Lin, Fanglue; Chiang, Yun-Chen et al. (2018) Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics 8:141-155
Chai, Zheng; Zhang, Xintao; Rigsbee, Kelly Michelle et al. (2018) Cryoprecipitate augments the global transduction of the adeno-associated virus serotype 9 after a systemic administration. J Control Release 286:415-424

Showing the most recent 10 out of 1525 publications