The Cancer Immunology Program is one of the longstanding components of the NYUCI, with 38 members from 9 Departments. This program has recently been expanded by the vigorous recruitment in Immunology conducted by the NYUCI and also the Department of Pathology, to new or newly renovated space. 12 faculty have been added to the Program in the past year;9 of these are new recruits brought to NYU School of Medicine from outstanding institutions such as Harvard, Stanford, Yale, UCSF, and others. Goals of the Cancer Immunology Program are: 1) to understand the biology of, more effectively diagnose, and develop treatments for neoplasms arising from cells of the lymphoid and myeloid system, 2) to understand the biology of tumor rejection, including the mechanisms used by tumors to evade the immune system;3) to effectively manipulate the immune system to promote immunotherapy of tumors. The program is subdivided into three thematic areas reflecting this tripartite mission. Members of this program collaborate extensively with other.NYUCI Programs, especially Growth Control, Breast Cancer, Neurooncology, and Melanoma. The Cancer Immunology Group has been highly productive, generating over 319 publications from 2002-2006 and has increased outside funding from $4.8 M in 2002 to $10.4 M in 2006. Total funding has increased from $7,128,048 to $11,674,122. Membership has increased from 17 to 38. Total publications for the past five years include 319 of which 4% are intra-programmatic and 15% are interprogrammatic.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-31
Application #
8232193
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
31
Fiscal Year
2011
Total Cost
$23,332
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Saint Fleur-Lominy, Shella; Maus, Mate; Vaeth, Martin et al. (2018) STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Rep 24:3045-3060.e5
Puranik, Amrutesh S; Leaf, Irina A; Jensen, Mark A et al. (2018) Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Sci Rep 8:13948
Weng, Mao-Wen; Lee, Hyun-Wook; Park, Sung-Hyun et al. (2018) Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 115:E6152-E6161
Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi et al. (2018) Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials 161:164-178
Burgess, Hannah M; Pourchet, Aldo; Hajdu, Cristina H et al. (2018) Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus. Mol Ther Oncolytics 8:71-81
Wong, Serre-Yu; Coffre, Maryaline; Ramanan, Deepshika et al. (2018) B Cell Defects Observed in Nod2 Knockout Mice Are a Consequence of a Dock2 Mutation Frequently Found in Inbred Strains. J Immunol 201:1442-1451
Handler, Jesse; Cullis, Jane; Avanzi, Antonina et al. (2018) Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-? exposure. Oncogene 37:4334-4342
Diamond, Julie M; Vanpouille-Box, Claire; Spada, Sheila et al. (2018) Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunol Res 6:910-920
Fan, Xiaozhou; Peters, Brandilyn A; Jacobs, Eric J et al. (2018) Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6:59
Chen, Danqi; Fang, Lei; Mei, Shenglin et al. (2018) Erratum: ""Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells"". Environ Health Perspect 126:019001

Showing the most recent 10 out of 1170 publications