Flow cytometry is a critical technology for members of the Cancer Center. Flow cytometry allows analysis of the light scattering and fluorescence properties of individual cells and the rapid, statistically detailed analysis of 10,000s of cells. Rather than averaging the quantitative information the data on individual cells is retained and subpopulations can be identified in multiple dimensions, the cells with particular fluorescence profiles can also be collected (up to 4 different groups) for growth or further analysis using the sorter. The NYU Cancer Institute Flow Cytometry facility offers users who cannot afford their own Sorters and Analyzers access to this technology. The facility has a Dako MoFlo sorter with 3 lasers and up to 8 colors of fluorescence and it also has two Becton Dickinson analyzers for multicolor analysis, which can be performed by a technician in the facility or directly by users. The manager and director also participate in training activities including individual consultations, public seminars and hands on training of users. The facility performed 984 hours of analysis and 585 hours of sorting during the most recent 12 month period. The user accessible analyzer was used for 804 hours in the recent 12 month period.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-31
Application #
8232210
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
31
Fiscal Year
2011
Total Cost
$87,287
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Huang, Chao; Zeng, Xingruo; Jiang, Guosong et al. (2017) XIAP BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cell. J Hematol Oncol 10:6
Silvera, Deborah; Ernlund, Amanda; Arju, Rezina et al. (2017) mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Mol Cell Biol 37:
Koh, Hyunwook; Blaser, Martin J; Li, Huilin (2017) A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome 5:45
Ma, Lijie; Liu, Yan; Landry, Nichole K et al. (2017) Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia. PLoS One 12:e0186769
Morabito, Michael V; Ravussin, Yann; Mueller, Bridget R et al. (2017) Weight Perturbation Alters Leptin Signal Transduction in a Region-Specific Manner throughout the Brain. PLoS One 12:e0168226
Koetz-Ploch, Lisa; Hanniford, Douglas; Dolgalev, Igor et al. (2017) MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res 30:328-338
Feig, Jessica L; Mediero, Aranzazu; Corciulo, Carmen et al. (2017) The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin. PLoS One 12:e0188135
Ono, Kentaro; Viet, Chi T; Ye, Yi et al. (2017) Cutaneous pigmentation modulates skin sensitivity via tyrosinase-dependent dopaminergic signalling. Sci Rep 7:9181
Wang, Xing; Zhang, Fenglin; Wu, Xue-Ru (2017) Inhibition of Pyruvate Kinase M2 Markedly Reduces Chemoresistance of Advanced Bladder Cancer to Cisplatin. Sci Rep 7:45983
Garré, Juan Mauricio; Silva, Hernandez Moura; Lafaille, Juan J et al. (2017) CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-?. Nat Med 23:714-722

Showing the most recent 10 out of 1082 publications