The Mouse Imaging Core of the New York University Cancer Institute (NYUCI) provides services to members utilizing two micro-imaging methods in the living mouse: 1) magnetic resonance micro-imaging (micro-MRI);and 2) ultrasound biomicroscopy (UBM). The focus of this imaging core on mice has been motivated by the increasing use of genetically engineered mice as model systems for studying cancer. Magnetic resonance and ultrasound imaging are indispensable tools used in the clinical diagnosis and staging of human cancer. To realize the full potential of mouse models of cancer, it is imperative to develop n vivo microscopic imaging approaches, allowing analysis, of disease progression and response to therapeutic agents in mice. The Mouse Imaging Core includes a 30-55 MHz UBM scanner and a 7 Tesla micro-MRI system, both situated in the Skirball SPF Mouse Facility, and available for noninvasive microimaging, functional analysis of blood flow and perfusion, as well as UBM-guided manipulation in mice from early embryonic through adult stages of development. The development of instrumentation and imaging approaches to manipulate developmental processes, to detect tumors and to analyze angiogenesis, tumor morphology, progression, regression and metastases has the potential to revolutionize cancer research. In combination with transgenic and gene targeting approaches in the mouse, in vivo microscopic imaging methods provide powerful and efficient new tools for studying the molecular and genetic mechanisms underlying oncogenesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-32
Application #
8376804
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
2013-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
32
Fiscal Year
2012
Total Cost
$33,588
Indirect Cost
$15,849
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Kim, Sungheon G; Feng, Li; Grimm, Robert et al. (2016) Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast. J Magn Reson Imaging 43:261-9
Zakhar, Joseph; Amrock, Stephen M; Weitzman, Michael (2016) Passive and Active Tobacco Exposure and Children's Lipid Profiles. Nicotine Tob Res 18:982-7
Pham, Alissa M; Santa Maria, Felicia Gilfoy; Lahiri, Tanaya et al. (2016) PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathog 12:e1005489
Pylayeva-Gupta, Yuliya; Das, Shipra; Handler, Jesse S et al. (2016) IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov 6:247-55
Lau, Colleen M; Nish, Simone A; Yogev, Nir et al. (2016) Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses. J Exp Med 213:415-31
Vogelsang, Matjaz; Martinez, Carlos N; Rendleman, Justin et al. (2016) The Expression Quantitative Trait Loci in Immune Pathways and their Effect on Cutaneous Melanoma Prognosis. Clin Cancer Res 22:3268-80
Domènech-Estévez, Enric; Baloui, Hasna; Meng, Xiaosong et al. (2016) Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS. J Neurosci 36:4506-21
Abdu, Yusuff; Maniscalco, Chelsea; Heddleston, John M et al. (2016) Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nat Cell Biol 18:1302-1310
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh et al. (2016) Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR Biomed 29:1350-63
Wu, Jing; Peters, Brandilyn A; Dominianni, Christine et al. (2016) Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 10:2435-46

Showing the most recent 10 out of 878 publications