The Proteomics Shared Resource provides state-of the-art biological mass spectrometry analyses to cancer researchers at NYU to help them identify and characterize proteins of medical importance. In many cases, it is only by studying proteins directly that one can achieve a useful understanding of the processes that underly the functioning of cells and tissues in normal and diseased states such as cancer. The shared resource has the capability to identify single, hundreds or even thousands of proteins in a single analysis, often at subfemtomole levels, by state of the art liquid chromatography-tandem mass spectrometry followed by database searching or de novo sequence determination. In most cases the facility strives to obtain accurate information about the absolute and/or relative quantities of these proteins from cells under various conditions to obtain important information about the functioning of the proteins. The shared resource also has special expertise in characterizing posttranslational modifications of proteins such as phosphorylation, acylation, glycosylation and ubiquitination. In addition to its technical expertise, one of the strengths of the facility is its ability to advise clients in the design and interpretation of experiments so that useful data can be obtained and meaningful information can be had from these data. Reliance on cutting edge technology and its expert and dedicated staff allow these services to be performed in a cost effective manner. Indeed, many experiments by investigators at NYU and the NYU Cancer Institute (NYUCI) could not have been done without the assistance of the Shared Resource. The Resource also has established a Clinical Proteomics Core for the detection of protein and peptide biomarkers for the early detection of cancer.

Public Health Relevance

Many or most diseases such as cancer are caused by improper amount, structure and/or functioning of proteins in cells. The NYUCI Proteomics Shared Resource employs state-of-the-art mass spectrometry technology to help cancer researchers characterize individual proteins or groups of proteins of interest with the goal of identifying the causes of cancer as a basis developing anticancer therapies

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016087-33
Application #
8436447
Study Section
Subcommittee G - Education (NCI)
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2013-04-01
Budget End
2014-02-28
Support Year
33
Fiscal Year
2013
Total Cost
$60,218
Indirect Cost
$24,691
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Pelzek, Adam J; Shopsin, Bo; Radke, Emily E et al. (2018) Human Memory B Cells Targeting Staphylococcus aureus Exotoxins Are Prevalent with Skin and Soft Tissue Infection. MBio 9:
Chiou, Kenneth L; Bergey, Christina M (2018) Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci Rep 8:1975
Jose, Cynthia C; Jagannathan, Lakshmanan; Tanwar, Vinay S et al. (2018) Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1. Mol Carcinog 57:794-806
Kourtis, Nikos; Lazaris, Charalampos; Hockemeyer, Kathryn et al. (2018) Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24:1157-1166
Formenti, Silvia C; Lee, Percy; Adams, Sylvia et al. (2018) Focal Irradiation and Systemic TGF? Blockade in Metastatic Breast Cancer. Clin Cancer Res 24:2493-2504
Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke et al. (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868
Stafford, James M; Lee, Chul-Hwan; Voigt, Philipp et al. (2018) Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 4:eaau5935
Lee, Chul-Hwan; Yu, Jia-Ray; Kumar, Sunil et al. (2018) Allosteric Activation Dictates PRC2 Activity Independent of Its Recruitment to Chromatin. Mol Cell 70:422-434.e6
Aiello, Nicole M; Maddipati, Ravikanth; Norgard, Robert J et al. (2018) EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell 45:681-695.e4
Jung, Heekyung; Baek, Myungin; D'Elia, Kristen P et al. (2018) The Ancient Origins of Neural Substrates for Land Walking. Cell 172:667-682.e15

Showing the most recent 10 out of 1170 publications