The Growth Control Program is composed of 38 investigators (34 Full and 4 Associate members) from 15 Departments with a common interest in understanding the cellular and molecular mechanisms by which eukaryotic cells regulate survival proliferation, and/or division. Moreover, members of this Program are committed to integrating basic research with an understanding of malignant transformation and the identification of targets for cancer therapeutics. The overall goal of the Program is to actively promote research collaborations amongst its members and facilitate the application of a wide range of cutting-edge research tools and approaches to better understand basic regulatory mechanisms that suppress malignant transformation in human cells. The Program has the following Specific Aims: 1) To study transcriptional and epigenetic machineries that regulate cell proliferation and differentiation;2) To elucidate intracellular cell signaling networks regulating cell survival and growth;3) To determine how cells control their division and checkpoints;4) To understand the mechanisms of action of oncogenes and tumor suppressors;and 5) To translate the knowledge generated from basic studies into tools to fight cancer. Wei Dai and Michele Pagano are the Co-Leaders for this Program. Total funding increased from $16,079,153 to $16,483,886 since the last competitive application. Membership has decreased from 45 to 38. Publications for the period total 477, of which 7.5% are intra-programmatic, 19.3% are inter-programmatic, and 2.7% are both intra- and interprogrammatic collaborations.

Public Health Relevance

Cancer is a collection of diseases characterized by uncontrolled cell growth. Deregulated cellular and molecular processes that govern cell survival, division, and/or death play key roles in the development of cancer. The Program functions to promote research collaborations among its members to better understand basic mechanisms that curb cancer development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-34
Application #
8765168
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
34
Fiscal Year
2014
Total Cost
$2,936
Indirect Cost
$1,204
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Jin, Honglei; Yu, Yonghui; Hu, Young et al. (2015) Divergent behaviors and underlying mechanisms of cell migration and invasion in non-metastatic T24 and its metastatic derivative T24T bladder cancer cell lines. Oncotarget 6:522-36
Zhou, Sherry; Weitzman, Michael; Vilcassim, Ruzmyn et al. (2015) Air quality in New York City hookah bars. Tob Control 24:e193-8
Brocato, Jason; Costa, Max (2015) 10th NTES Conference: Nickel and arsenic compounds alter the epigenome of peripheral blood mononuclear cells. J Trace Elem Med Biol 31:209-13
Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany et al. (2015) Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J Immunotoxicol 12:140-53
Jhaveri, Komal; Chandarlapaty, Sarat; Lake, Diana et al. (2014) A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer 14:154-60
Ota, Mitsuhiko; Horiguchi, Masahito; Fang, Victoria et al. (2014) Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-? in gastric tissue. Cancer Res 74:2642-51
McKinney, Caleb; Zavadil, Jiri; Bianco, Christopher et al. (2014) Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication. Cell Rep 6:9-17
Vazquez-Cintron, Edwin J; Vakulenko, Maksim; Band, Philip A et al. (2014) Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 9:e85517
Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh et al. (2014) Interleukin 17-producing ??T cells promote hepatic regeneration in mice. Gastroenterology 147:473-84.e2
Wu, Meng; Yang, Feikun; Ren, Zhihua et al. (2014) Identification of the nuclear localization signal of SALL4B, a stem cell transcription factor. Cell Cycle 13:1456-62

Showing the most recent 10 out of 491 publications