The Cancer Genetics and Genomics Program (CGG) consists of 44 independent but interactive members belonging to 14 departments with common interests in the cancer genome and its genes. Under the leadership of Drs. Lajos Pusztai and Frank Slack, the CGG promotes: (1) research into the role of specific normal and mutant genes and biochemical pathways involving products of those genes in human cancer, including identifying and characterizing novel somatic and hereditary cancer genes using whole genome approaches such as resequencing and mouse knock out technologies;(2) research into mechanisms of gene regulation, including epigenetic processes that control gene expression, particularly as it pertains to human cancer, including incorporating the global, genome-wide study of genome structure, gene transcription, and protein synthesis;(3) research into the development of techniques and approaches that further the first 2 goals and, in particular, applying novel research findings to cancer risk assessment, diagnosis, therapy and rational drug development. CGG collaborates extensively with the Cancer Prevention &Control Program (CPC) and the Developmental Therapeutics Program (DT). The goals of CGG are accomplished through a monthly group meeting, administration of a Pilot Grant program to stimulate programmatically-oriented research in cancer, and by facilitating collaboration between members within the program and other Cancer Center programs. The CGG is derived from the former Cancer Genetics Program (CG) and the Gene Regulation and Functional Genomics (GRFG) Program and was renamed to reflect the overlap and strength in the two former programs. In aggregate, the program membership was altered to increase cancer focus as well as to add several outstanding new members. The reorganization reflects the profound developments that have occurred in the molecular genetics of cancer, as well as in the broader field of genomics. An increased emphasis on translational research is evident from the co-leadership of a basic and a clinical researcher, as well as a number of important collaborative grants such as the Skin Cancer SPORE, a lung cancer SPORE submission and the Yale-Gile'ad Collaboration. Total peer-reviewed funding is $5.6M direct costs annually (S8.9M total costs), of which $1.9M direct costs ($3.2M total costs) come from NCI. Total direct funding is $8.2M ($12.3M total costs). During the previous grant period, CGG members published 475 cancer-related papers, of which 17% were intra-programmatic and 35% inter-programmatic, and members have received $1,075,000 in YCC pilot funds and leveraged that into >$5.8M in extramural funding.

Public Health Relevance

CGG is made up of collaborative, cancer-focused scientists with interests in the cancer genome and its genes. The program combines the strengths of a highly productive basic science faculty in discovering fundamental mechanisms of cancer biology with the expertise of a growing clinical science faculty to translate these discoveries into therapeutic and diagnostic advances in the clinic. The program is knitted together with a monthly research seminar, leading to substantial intra- and interprogrammatic collaborations

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016359-34
Application #
8558283
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-07-01
Project End
2018-07-31
Budget Start
2013-09-09
Budget End
2014-07-31
Support Year
34
Fiscal Year
2013
Total Cost
$19,707
Indirect Cost
$7,871
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Wimberly, Hallie; Brown, Jason R; Schalper, Kurt et al. (2015) PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunol Res 3:326-32
Ma, Xiaomei; Wang, Rong; Long, Jessica B et al. (2014) The cost implications of prostate cancer screening in the Medicare population. Cancer 120:96-102
Herbst, Roy S; Soria, Jean-Charles; Kowanetz, Marcin et al. (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563-7
Durazzo, Tyler S; Tigelaar, Robert E; Filler, Renata et al. (2014) Induction of monocyte-to-dendritic cell maturation by extracorporeal photochemotherapy: initiation via direct platelet signaling. Transfus Apher Sci 50:370-8
Black, Jonathan D; English, Diana P; Roque, Dana M et al. (2014) Targeted therapy in uterine serous carcinoma: an aggressive variant of endometrial cancer. Womens Health (Lond Engl) 10:45-57
Smith, Matthew R; Halabi, Susan; Ryan, Charles J et al. (2014) Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol 32:1143-50
Cao, Jian; Liu, Zongzhi; Cheung, William K C et al. (2014) Histone demethylase RBP2 is critical for breast cancer progression and metastasis. Cell Rep 6:868-77
Gonzalez, A L; Berger, C L; Remington, J et al. (2014) Integrin-driven monocyte to dendritic cell conversion in modified extracorporeal photochemotherapy. Clin Exp Immunol 175:449-57
O'Malley, Stephanie S; Wu, Ran; Mayne, Susan T et al. (2014) Smoking cessation is followed by increases in serum bilirubin, an endogenous antioxidant associated with lower risk of lung cancer and cardiovascular disease. Nicotine Tob Res 16:1145-9
Chen, Lieping (2014) From the guest editor: Tumor site immune modulation therapy. Cancer J 20:254-5

Showing the most recent 10 out of 72 publications