Experimental cell therapy requires focused scientific, technical, and regulatory expertise and resources that are not affordable to individual investigators or departments. To provide such capabilities to translational researchers, the Abramson Cancer Center (ACC) introduced the Clinical Cell and Vaccine Production Facility (CVPF) as a new NCI Core Grant Shared Resource in 2004. This Core is directed by Bruce Levine, Ph.D. The Core was initially established as a pilot facility consisting of two adjoining rooms in BRBII/III, a research building. In 2005, with a considerable investment of non-Core Grant Funds, this Core expanded into a newly renovated 10-room 1880 square foot Good Manufacturing Practices (GMP) suite within the Hospital of the University of Pennsylvania (HUP). This new facility is the only space on campus that can perform cell and tissue processing in compliance with FDA regulations 21 CFR Parts 210 and 211. The mission of the CVPF is to enable the translation from research bench-to-bedside of novel allogeneic and autologous cell-based vaccines and experimental gene therapies. The Core performs cell and biologic processing and expansion on a range of different cell types, including bone marrow and umbilical cord blood derived CD4+ and CD8+ T lymphocytes, dendritic cells, mesenchymal stem cells, smooth muscle, and endothelial cells in support of first-in-human, and early phase 1 and 11 cell and gene therapy clinical trials, with an emphasis on cancer. Since the move to HUP and validation of the new facility in 2005, the Core has produced over 300 cell-based cancer vaccines that have been safely administered to over 170 patients. Core services in cell processing, the development and testing of GLP and GMP-grade reagents, pre-clinical scale-up and validation, and FDA regulatory consultation have all been critical in supporting clinical translation programs at Penn, as well as at the National Cancer Institute (NCI) and other peer Cancer Centers. Since establishment as a Shared Resource in 2004, the CVPF has enabled the submission of eight Investigational New Drug applications, and has played a major role in the initiation and manufacturing of GMP cellular products for 18 cell-based cancer therapy trials. Therefore, Core services have accelerated the testing of innovative investigational biologies in this area. Another eleven cancer trials are in development. The CVPF also continues to provide clinical grade reagents for investigator use, and in the past two years has developed separate sets of master and working cell banks of cell-based artificial antigen presenting cells (aAPC) for the optimal expansion of different T cell subsets, such as Tregs, CD8+ T cells, and NK cells for use in cancer immunotherapy. This work has led to the submission of the first FDA Biologies Master File by the CVPF. In the next year, these new reagents will be evaluated in trials in ovarian cancer and hematologic malignancies. Clinical studies of over 25 ACC PIs and co-PIs are supported by the CVPF. ACC member usage is 75% of the total core usage. CCSG support represents 11% of the proposed core budget with the remaining funding coming from other grants/contracts, charge backs or institutional support.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Taylor, Laura A; Abraham, Ronnie M; Tahirovic, Emin et al. (2017) High ALDH1 expression correlates with better prognosis in tumorigenic malignant melanoma. Mod Pathol 30:634-639
Rebecca, Vito W; Nicastri, Michael C; McLaughlin, Noel et al. (2017) A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discov 7:1266-1283
Till, Jacob E; Yoon, Changhwan; Kim, Bang-Jin et al. (2017) Oncogenic KRAS and p53 Loss Drive Gastric Tumorigenesis in Mice That Can Be Attenuated by E-Cadherin Expression. Cancer Res 77:5349-5359
Ewens, Kathryn G; Bhatti, Tricia R; Moran, Kimberly A et al. (2017) Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 6:619-630
Chee, Wonshik; Lee, Yaelim; Im, Eun-Ok et al. (2017) A culturally tailored Internet cancer support group for Asian American breast cancer survivors: A randomized controlled pilot intervention study. J Telemed Telecare 23:618-626
Zang, Tianzhu; Taplin, Mary-Ellen; Tamae, Daniel et al. (2017) Testicular vs adrenal sources of hydroxy-androgens in prostate cancer. Endocr Relat Cancer 24:393-404
Walter, David M; Venancio, Olivia S; Buza, Elizabeth L et al. (2017) Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma. Cancer Res 77:1719-1729
Carrer, Alessandro; Parris, Joshua L D; Trefely, Sophie et al. (2017) Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J Biol Chem 292:3312-3322
Fennelly, Colin; Amaravadi, Ravi K (2017) Lysosomal Biology in Cancer. Methods Mol Biol 1594:293-308
Safo, Sandra E; Li, Shuzhao; Long, Qi (2017) Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics :

Showing the most recent 10 out of 955 publications