Established in 2008 as an emerging core facility, the Functional Proteomics Reverse Phase Protein Array (RPPA) Core provides cancer center members with access to a powerful, high-throughput, quantitative cost effective antibody-based assay to characterize basal or ligand-induced protein expression and modification, and time-resolved responses appropriate for systems biology analysis. The RPPA provides information to integrate the consequence of genetic aberrations in cancer, to validate therapeutic targets and to evaluate drug pharmacodynamics. MD Anderson provides 640 square feet of space, additional salary support, and administrative support through the Department of Systems Biology. Services include providing standard operating procedures to investigators for extraction of protein from cells or tumor tissue, processing protein extracts received from investigators, robotic arraying on nitrocellulose-coated slides, and probing with antibodies validated by the RPPA core. Major equipment purchased in part with institutional funding of $320,000 includes a Tecan robotic liquid handling system for serial dilution of cell/tumor lysates and sample transfer, two Aushon 2470 arrayers for printing of cellular/tumor lysates onto nitrocellulose-coated slides and two Dako Universal Staining systems for probing slides with antibodies. Data are analyzed using customized software (MicroVigene and Supercurve Fitting) to determine signal intensity, curve construction, and relative protein concentration. Importantly, the facility validates antibodies to expand the available antibody repertoire. The facility established qulity control processes to improve the quality and accuracy of the RPPA data sets. Since 2008, the facility has processed 47,306 samples from 179 users with a panel of 150 to 180 antibodies. Center members with peer-reviewed funding account for 78% of users, and 20% of total costs are requested from the CCSG. Service utilization grew by an average 14% per year over the past 4 years and 40% over the last 4 years. Publications cited using the RPPA have appeared in high impact journals such as Nature Medicine, Nature Genetics, PNAS and Cancer Cell, etc. In the future, the RPPA Core plans to 1) expand the validated antibody repertoire;2) optimize assay conditions for laser-aided micro-dissected or paraffin-embedded tissue samples;3) explore RPPA applications for body fluids;4) provide forward phase protein array;and 5) develop technology for kinase affinity capture.

Public Health Relevance

Many results from the RPPA Core have been or will be reported in publications and grant applications. To date, 81 publications, including high-profile peer- reviewed journals such as Nature Medicine, Nature Genetics, PNAS, and Cancer Cell, have used data from the Core. In 2011, in recognition of its excellence, the Functional Proteomics RPPA Core was contracted to perform RPPA analysis on all Cancer Genome Atlas samples.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016672-38
Application #
8557382
Study Section
Subcommittee G - Education (NCI)
Project Start
1998-09-04
Project End
2018-06-30
Budget Start
2013-09-06
Budget End
2014-06-30
Support Year
38
Fiscal Year
2013
Total Cost
$309,415
Indirect Cost
$116,068
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Daver, Naval; Verstovsek, Srdan (2015) Ruxolitinib and DNA methyltransferase-inhibitors: a foray into combination regimens in myelofibrosis. Leuk Lymphoma 56:279-80
Burstein, Matthew D; Tsimelzon, Anna; Poage, Graham M et al. (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688-98
Mersch, Jacqueline; Jackson, Michelle A; Park, Minjeong et al. (2015) Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121:269-75
Pugh, Thomas J; Mahmood, Usama; Swanson, David A et al. (2015) Sexual potency preservation and quality of life after prostate brachytherapy and low-dose tadalafil. Brachytherapy 14:160-5
Zuo, Zhuang; Maiti, Sourindra; Hu, Shimin et al. (2015) Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Mod Pathol 28:373-82
Martin, Neil E; Massey, Laura; Stowell, Caleb et al. (2015) Defining a standard set of patient-centered outcomes for men with localized prostate cancer. Eur Urol 67:460-7
Shen, Qi; Ouyang, Juan; Tang, Guilin et al. (2015) Flow cytometry immunophenotypic findings in chronic myelomonocytic leukemia and its utility in monitoring treatment response. Eur J Haematol 95:168-76
Massarweh, Nader N; Haynes, Alex B; Chiang, Yi-Ju et al. (2015) Adequacy of the National Quality Forum's Colon Cancer Adjuvant Chemotherapy Quality Metric: Is 4 Months Soon Enough? Ann Surg 262:312-20
Garcia-Manero, Guillermo; Khoury, Hanna J; Jabbour, Elias et al. (2015) A phase I study of oral ARRY-614, a p38 MAPK/Tie2 dual inhibitor, in patients with low or intermediate-1 risk myelodysplastic syndromes. Clin Cancer Res 21:985-94
Brown, Alaina J; Sun, Charlotte C; Urbauer, Diana et al. (2015) Targeting those with decreased meaning and peace: a supportive care opportunity. Support Care Cancer 23:2025-32

Showing the most recent 10 out of 2114 publications