The Bioinformatics Shared Resource (BISR) provides consultation, collaboration, and support for researchers and core facilities throughout MD Anderson in the statistical analysis and biological interpretation of data from high-throughput pre-clinical technologies. The BISIR has specialist expertise in the bioinformatics of all types of microarrays, next-generation sequencing, mass spectrometry, and flow cytometry. The consultation and collaboration services of the BISR (in hours) have grown 3.1 fold over the past 5 years. The BISR uses a heterogeneous computing environment supported across Windows, Unix/Linux, and Mac OS X operating systems, with access to more than 300 terabytes of in-house storage space for home directories, research data, and data mirrors. It accesses in-house parallel computing capability through a 48-processor Cray XD1 HPC cluster and a 290-processor distributed computing Condor pool of over 160 Windows workstations (each with >2GB of memory) and 8 servers (ranging from 4GB to 16GB of memory). BISR services have been used over the past 5 years by 301 researchers 92% of whom are peer-reviewed cancer center members. Publications cited using the BISR have appeared in Nature, Science, N Engl J Med and J Clin Oncol. Annually, MD Anderson has provided institutional support to the BISR in the amount of $1,244,846. The BISR is requesting funding from the CCSG in the amount of 3% of its total operating budget. In the last 5 years, the BISR has (1) recruited 9 very strong new faculty members from top institutions plus 2 more with joint appointments. It will continue to recruit top bioinformatics faculty and will encourage their participation in multidisciplinary collaborative research to complement their investigator-initiated research;(2) recruited 8 new statistical analysts and 3 biocatalysts to support projects around the institution;(3) created a cadre of 14 postdoctoral fellows, who participate in collaborative research;(4) recruited 4 new programmer/software engineers plus 6 on contract to provide programming strength for its support functions. It will continue to seek talented computer specialists;(5) established a popular hands-on workshop series on bioinformatics tools for MD Anderson biologists and clinical researchers (>500 attendees for 2-hour sessions to date). The BISR will continue to encourage the professional growth of ail of its members through advanced education In bioinformatics and computational skills. It will continue to improve its emerging status as one of the world?s leading bioinformatics groups as we pursue MD Anderson's mission: Making cancer history.

Public Health Relevance

It is now easier, and often cheaper, to generate millions of data points on the molecular profiles of cancers than it is to analyze those data points statistically or interpret them biologically. With the revolution in DNA and RNA sequencing, the need for bioinformatics support throughout MD Anderson has increased exponentially, and the BISR is the institution?s principal resource for dealing with this data deluge.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016672-38
Application #
8557384
Study Section
Subcommittee G - Education (NCI)
Project Start
1998-09-04
Project End
2018-06-30
Budget Start
2013-09-06
Budget End
2014-06-30
Support Year
38
Fiscal Year
2013
Total Cost
$148,816
Indirect Cost
$55,824
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Van Roosbroeck, Katrien; Fanini, Francesca; Setoyama, Tetsuro et al. (2016) Combining anti-miR-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res :
Cassani, Lisa S; Raju, Gottumukkala S (2016) Techniques for management of bleeding associated with colonic endoscopic mucosal resection. Gastrointest Endosc 83:469-70
Zargar, Homayoun; Atwell, Thomas D; Cadeddu, Jeffrey A et al. (2016) Cryoablation for Small Renal Masses: Selection Criteria, Complications, and Functional and Oncologic Results. Eur Urol 69:116-28
Ma, Junsheng; Hobbs, Brian P; Stingo, Francesco C (2016) Integrating genomic signatures for treatment selection with Bayesian predictive failure time models. Stat Methods Med Res :
Jinesh, Goodwin G; Kamat, Ashish M (2016) Endocytosis and serpentine filopodia drive blebbishield-mediated resurrection of apoptotic cancer stem cells. Cell Death Discov 2:
Maiti, Abhishek; Cortes, Jorge E; Brown, Yolanda D et al. (2016) Phase I/II study of low-dose azacytidine in patients with chronic myeloid leukemia who have minimal residual disease while receiving therapy with tyrosine kinase inhibitors. Leuk Lymphoma :1-4
Visone, R; Pallante, P; Vecchione, A et al. (2016) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 35:5214
Zhou, Fuling; Li, Ming; Wei, Yongchang et al. (2016) Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget :
Gamaletsou, Maria N; Rammaert, Blandine; Bueno, Marimelle A et al. (2016) Candida Arthritis: Analysis of 112 Pediatric and Adult Cases. Open Forum Infect Dis 3:ofv207
Parra, Edwin R; Behrens, Carmen; Rodriguez-Canales, Jaime et al. (2016) Image Analysis-based Assessment of PD-L1 and Tumor-Associated Immune Cells Density Supports Distinct Intratumoral Microenvironment Groups in Non-small Cell Lung Carcinoma Patients. Clin Cancer Res :

Showing the most recent 10 out of 9121 publications