The Monoclonal Antibody (MAb) Facility (MAF) provides non-commercially-available antibodies to MD Anderson Cancer Center investigators for specific applications. The MAF serves basic, translational and clinical researchers across the institution and is currently developing projects in each of these three areas. Although the services are based on """"""""traditional"""""""" murine hybridoma technology, the MAF offers custom immunization strategies and support for functional screening in order to produce unique antibodies suitable for novel applications. The MAF occupies 726 sq. ft. in 1SCRB, home to the Center for Cancer Immunology Research (CCIR) on the South Campus. This is a state-of-the-art facility for immunology research that provides a platform for integrating basic and clinical research programs. The CCIR is equipped with customized laboratory services, centralized tissue culture rooms, liquid nitrogen tank rooms, and glassware washing and sterilization facilities, all of which are available to the MAF. The MAF has a tissue culture laboratory (SCR 4.2158), a protein chemistry area (SCR 4.2220), and space in the South Campus Vivarium that is a component of the Research Animal Support Facility shared resource. In the last 5-year period, the MAF developed three MAbs that have potential for clinical development as therapeutic agents, and several additional candidates are in preclinical assessment. Several antibodies produced by the MAF have been licensed or are in the process of being licensed for commercial development. MD Anderson members with peer-reviewed funding accounted for 97% of the usage of the resource and 30% support is requested from the CCSG. Since 2007, the MAF has supported the research of 40 MD Anderson investigators with peer reviewed funding representing 16 CCSG Programs, compared to 13 investigators in the previous grant period. Hybridoma production increased from 44 to 79 projects (a 178% increase), and total services provided increased more than 300% during this grant cycle. Publications cited using the MAF have appeared in Nature, PNAS, Blood and Nature Medicine. Future plans include the purchase of a bioreactor for large scale production to support the increasing demand for the quantities of MAbs required for preclinical development Novel methods of immunization including DNA expression will be explored. The facility also plans to explore the direct generation of """"""""fully human antibodies"""""""" using """"""""humanized"""""""" mice or using Phage display scFv libraries as a more rapid and direct strategy to produce antibodies for future clinical applications of newly-discovered markers.

Public Health Relevance

The MAF develops high-quality, cost-effective customized MAbs to meet the basic, translational, and clinical research needs of MD Anderson investigators. Rates are comparable to other institutions across the country and, in some cases, significantly lower. Many of the MAbs generated have been licensed or patented.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Torres, Harrys A; Hosry, Jeff; Mahale, Parag et al. (2018) Hepatitis C virus reactivation in patients receiving cancer treatment: A prospective observational study. Hepatology 67:36-47
Parra, Edwin R; Villalobos, Pamela; Behrens, Carmen et al. (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6:48
Yin, Guosheng; Chen, Nan; Lee, J Jack (2018) Bayesian Adaptive Randomization and Trial Monitoring with Predictive Probability for Time-to-event Endpoint. Stat Biosci 10:420-438
Nong, Jingying; Gong, Yuhua; Guan, Yanfang et al. (2018) Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nat Commun 9:3114
Brown, Justin C; Rickels, Michael R; Troxel, Andrea B et al. (2018) Dose-response effects of exercise on insulin among colon cancer survivors. Endocr Relat Cancer 25:11-19
Vakil, Erik; Jimenez, Carlos A; Faiz, Saadia A (2018) Pleural effusions in hematologic malignancies and their management with indwelling pleural catheters. Curr Opin Pulm Med 24:384-391
Yedururi, Sireesha; Chawla, Sumedha; Amini, Behrang et al. (2018) Tumor thrombus in the large veins draining primary pelvic osteosarcoma on cross sectional imaging. Eur J Radiol 105:49-55
Farinholt, Paige; Park, Minjeong; Guo, Ying et al. (2018) A Comparison of the Accuracy of Clinician Prediction of Survival Versus the Palliative Prognostic Index. J Pain Symptom Manage 55:792-797
Oh, Sang Cheul; Sohn, Bo Hwa; Cheong, Jae-Ho et al. (2018) Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun 9:1777
Yang, Yi; Li, Chia-Wei; Chan, Li-Chuan et al. (2018) Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 28:862-864

Showing the most recent 10 out of 12418 publications