The Biostatistics Core provides a resource for KCI members conducting basic, both in vitro and in vivo, clinical, population and translational research. The objective ofthe Core is to provide expertise in statistical science to ensure scientific rigor in study design, statistical analysis, and interpretation of cancer research data. Specifically, members ofthe Core: Develop experimental designs for clinical, laboratory, intervention, and observational studies Conduct statistical analyses and collaborate on interpretation of results Write statistical reports and make statistical presentations Write grant proposals, study protocols, and manuscripts in collaboration with investigators Provide instruction in biostatistics to cancer researchers in journal clubs, seminar series, and cancer biology courses Evaluate new and conventional statistical methodology for applicability to cancer research projects and apply or adapt the methods as required

Public Health Relevance

Biostatistics is important in the design of cancer research studies to ensure that the scientific questions are framed so that they can be answered precisely and efficiently. Biostatistics is important in the analysis of these studies to ensure that the conclusions are accurate and valid.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA022453-32
Application #
8600876
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
32
Fiscal Year
2014
Total Cost
$529,561
Indirect Cost
$181,165
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Ratanatharathorn, V; Deol, A; Ayash, L et al. (2015) Low-dose antithymocyte globulin enhanced the efficacy of tacrolimus and mycophenolate for GVHD prophylaxis in recipients of unrelated SCT. Bone Marrow Transplant 50:106-12
Bollig-Fischer, Aliccia; Chen, Wei; Gadgeel, Shirish M et al. (2015) Racial diversity of actionable mutations in non-small cell lung cancer. J Thorac Oncol 10:250-5
Motzer, Robert J; Rini, Brian I; McDermott, David F et al. (2015) Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. J Clin Oncol 33:1430-7
Wijesinghe, Priyanga; Bepler, Gerold; Bollig-Fischer, Aliccia (2015) A mass spectrometry assay to simultaneously analyze ROS1 and RET fusion gene expression in non-small-cell lung cancer. J Thorac Oncol 10:381-6
Koo, Imhoi; Wei, Xiaoli; Shi, Xue et al. (2014) Constructing Metabolic Association Networks Using High-dimensional Mass Spectrometry Data. Chemometr Intell Lab Syst 138:193-202
Koo, Imhoi; Yao, Sen; Zhang, Xiang et al. (2014) Comparative analysis of false discovery rate methods in constructing metabolic association networks. J Bioinform Comput Biol 12:1450018
Szalai, Gabor; Xu, Yi; Romero, Roberto et al. (2014) In vivo experiments reveal the good, the bad and the ugly faces of sFlt-1 in pregnancy. PLoS One 9:e110867
Heng, D Y C; Choueiri, T K; Rini, B I et al. (2014) Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. Ann Oncol 25:149-54
Speyer, Cecilia L; Hachem, Ali H; Assi, Ali A et al. (2014) Metabotropic glutamate receptor-1 as a novel target for the antiangiogenic treatment of breast cancer. PLoS One 9:e88830
Bengsch, F; Buck, A; Gunther, S C et al. (2014) Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33:4474-84

Showing the most recent 10 out of 321 publications