Transgenic & Genetic Constructs (TGC) The Transgenic & Genetic Constructs (TGC) Shared Resource, directed by Dr. Steven Fiering, provides services for generating, maintaining, and genetically and experimentally manipulating genetically modified mice (GMM). TGC provides mouse, cell, and genetic construct manipulation and speed congenics to NCCC researchers. These technical services are provided by 3 technical specialists, one for the mouse work, one in Embryonic Stem cell culture and general molecular biology research, and the third performing automated SNP genotyping assays using Illumina(R) technology. Newer services of TGC involve using techniques to generate mice with either humanized immune systems or humanized livers. A colony of immunodeficient Nod/SCID/IL2gamma receptor knockout mice (NSG) is in high demand by NCCC researchers, because they are the optimal strain for establishing xenografts of human tumor cell lines. For many GMM-based experiments, knowing the genetic background carrying the genetic modifications is crucial. Traditionally, a 3-year process of random backcrossing has been required to change the genetic background of a GMM. Dr. James Gorham, with assistance from Fiering, established a speed congenic facility that uses automated SNP genotyping to perform speed congenic and related services on GMM. Merging TGC with the Speed Congenics Resource expanded TGC services to provide rapid identification of male breeders with the highest proportion of the desired background; this has cut the required number of backcross generations from 10 to 5. On a daily basis, Fiering focuses primarily on the transgenic mouse generation and utilization services, and Gorham focuses on the speed congenics, but they work together to direct TGC as one unit. Combining these services into TGC has enabled us to expand and improve services and efficiency to better serve our clients. The generation and utilization of GMM is a technically complex field, with new techniques rapidly evolving. TGC constantly is developing new technical capabilities and new services to broaden our ability to support GMM usage in cancer research. The vast majority of services provided by TGC utilize equipment (e.g., tissue culture hoods, molecular biology equipment, microscopes, and injection devices and surgical tools) that have been in the lab for most of the 16 years of its existence. Biological systems in use at a given time, technological approaches and the faculty and their interests constantly evolve. Our ability to provide the broad range of services is dependent primarily on the accumulated skill of the personnel performing the service tasks, such as culturing ES cells, manipulating embryos, using recombineering to generate constructs, and speed congenic analysis. TGC services are an important component of the research conducted by 4 of 6 NCCC Research Programs (Cancer Mechanisms, Molecular Therapeutics, Cancer Imaging & Radiobiology, and Immunology & Cancer Immunotherapy). TGC also has entered into shared service agreements with the University of Vermont Transgenic Shared Resource and Jackson Labs to avoid overlapping services and to refer clients for services not available at their institution.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA023108-40
Application #
9616823
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
40
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Lin, Anping; Yin, Juan; Cheng, Chao et al. (2018) Decreased expression of FOXA2 promotes eutopic endometrial cell proliferation and migration in patients with endometriosis. Reprod Biomed Online 36:181-187
Elder, David E; Piepkorn, Michael W; Barnhill, Raymond L et al. (2018) Pathologist characteristics associated with accuracy and reproducibility of melanocytic skin lesion interpretation. J Am Acad Dermatol 79:52-59.e5
Rutter, Carolyn M; Kim, Jane J; Meester, Reinier G S et al. (2018) Effect of Time to Diagnostic Testing for Breast, Cervical, and Colorectal Cancer Screening Abnormalities on Screening Efficacy: A Modeling Study. Cancer Epidemiol Biomarkers Prev 27:158-164
Kumar, Nishant; Tafe, Laura J; Higgins, John H et al. (2018) Identifying Associations between Somatic Mutations and Clinicopathologic Findings in Lung Cancer Pathology Reports. Methods Inf Med 57:63-73
Punshon, Tracy; Jackson, Brian P (2018) Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem 252:258-264
Pernas, Sonia; Martin, Miguel; Kaufman, Peter A et al. (2018) Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol 19:812-824
Svedbom, Axel; Borgström, Fredrik; Hernlund, Emma et al. (2018) Quality of life after hip, vertebral, and distal forearm fragility fractures measured using the EQ-5D-3L, EQ-VAS, and time-trade-off: results from the ICUROS. Qual Life Res 27:707-716
Skolasky, Richard L; Scherer, Emily A; Wegener, Stephen T et al. (2018) Does reduction in sciatica symptoms precede improvement in disability and physical health among those treated surgically for intervertebral disc herniation? Analysis of temporal patterns in data from the Spine Patient Outcomes Research Trial. Spine J 18:1318-1324
Doubeni, Chyke A; Gabler, Nicole B; Wheeler, Cosette M et al. (2018) Timely follow-up of positive cancer screening results: A systematic review and recommendations from the PROSPR Consortium. CA Cancer J Clin 68:199-216
Sites, Brian D; Harrison, Jordon; Herrick, Michael D et al. (2018) Prescription Opioid Use and Satisfaction With Care Among Adults With Musculoskeletal Conditions. Ann Fam Med 16:6-13

Showing the most recent 10 out of 1911 publications