The Purdue University Center for Cancer Research Mass Spectrometry Shared Resource is part of the Purdue University Campus-wide Mass Spectrometry Center (CWMSC) and is operated under the Purdue University chargeback system. The Shared Resource has provided essential services for members of the Cancer Center for over twenty-five years and this service reflects the strength and national leadership of Purdue University in analytical chemistry. The Mass Spectrometry Shared Resource provides analysis services for small organic compounds that are mainly generated in the Medicinal Chemistry and Drug Delivery and Molecular Sensing scientific programs. The Shared Resource offers a full range of mass spectrometry ionization techniques including Electrospray Ionization (ESI), Matrix-Assisted Laser Desorption Ionization (MALDI) and Atmospheric Pressure Chemical Ionization (APCI) for the analysis of nonvolatile components. Electron Impact (El) and Chemical Ionization (Cl) for volatile components, Inductively Coupled Argon Plasma Ionization (ICP) for multi-element analysis and High Resolution Mass Measurement capabilities.

Public Health Relevance

The role of the shared resource is to assist individual investigators and scientific Programs within the Center that are seeking novel approaches to addressing a variety of cancer-related issues. In offering these key services, the shared resource provides the expertise necessary for achieving the next challenge;challenges that when solved will aid in reducing the pain and suffering of cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Purdue University
West Lafayette
United States
Zip Code
Krisenko, Mariya O; Cartagena, Alexander; Raman, Arvind et al. (2015) Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal Syk-dependent changes in microtubule stability mediated by MAP1B. Biochemistry 54:60-8
Cho, Eun Jung; Sun, Bo; Doh, Kyung-Oh et al. (2015) Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials 37:312-9
Bai, Yu; Davis, Dexter C; Dai, Mingji (2014) Synthesis of tetrahydropyran/tetrahydrofuran-containing macrolides by palladium-catalyzed alkoxycarbonylative macrolactonizations. Angew Chem Int Ed Engl 53:6519-22
Chao, Chi-Hong; Chang, Chao-Ching; Wu, Meng-Ju et al. (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124:3093-106
Lee, Kyuwan; Cui, Yi; Lee, Luke P et al. (2014) Quantitative imaging of single mRNA splice variants in living cells. Nat Nanotechnol 9:474-80
Yang, Yang; Haskins, Christopher W; Zhang, Wandi et al. (2014) Divergent total syntheses of lyconadins A and C. Angew Chem Int Ed Engl 53:3922-5
Ghosh, Arun K; Osswald, Heather L (2014) BACE1 (?-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 43:6765-813
Byun, Alexander J; Hung, Kenneth E; Fleet, James C et al. (2014) Colon-specific tumorigenesis in mice driven by Cre-mediated inactivation of Apc and activation of mutant Kras. Cancer Lett 347:191-5
Emmert, Dana; Campos, Christopher R; Ward, David et al. (2014) Reversible dimers of the atypical antipsychotic quetiapine inhibit p-glycoprotein-mediated efflux in vitro with increased binding affinity and in situ at the blood-brain barrier. ACS Chem Neurosci 5:305-17
Hrycyna, Christine A; Summers, Robert L; Lehane, Adele M et al. (2014) Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum. ACS Chem Biol 9:722-30

Showing the most recent 10 out of 109 publications