The Purdue University Center for Cancer Research organized the Drug Delivery and Molecular Sensing program (DDMS) to take advantage of institutional research strengths that closely match new initiatives from the National Cancer Institute (NCI) centered around cancer imaging, bionanotechnology, genomics, proteomics, and biomarker discovery. Given the deep pool of talented Purdue faculty, we envisioned stimulating interactions by matching technologies to specific problems in cancer biology and therapeutics. At the inception in 2006, the nucleus of the DDMS program included just six Center members. Through a series of campus wide workshops and interactions with other programs, departments and individual faculty, the program leader. Dr. Donald Bergstrom built a program with 17 participants within a three year period. The new members include four assistant professors and two associate professors. Among the 17 participants, six have primary appointments in the college of engineering while the group as a whole represents four colleges and ten departments. DDMS program participants published 492 papers since 2003 (9% collaborative). Of twenty-eight peer reviewed grants active during the last budget year, six are NCI funded R01, R03, and R21 grants and four are cancer-focused but funded by other agencies (2 NIH-EB, 2 NIH-GM). The total peer reviewed support during this period was $4,627,196 direct costs, of which $1,490,188 (32.2%) came from NCI grants. DDMS members'research activities fall broadly into three categories: 1) New molecules and materials, 2) In-vivo sensing: cell to whole animal, 3) Ex-vivo sensing. Many of the participants in the DDMS program are """"""""molecular tool"""""""" designers and developers, so from a molecular perspective, the activities within the three categories include synthesis and use of molecular probes, development of drug delivery technologies and devices, design and construction of nanoprobes for cellular studies and diagnostics, development of """"""""omics"""""""" tools, development of molecular imaging technologies, and development of tools for probing bimolecular structure and function.

Public Health Relevance

. The program brings together scientists from various fields to address important cancer-related questions. Program leadership sets goals and encourages collaborations. Through the collaborative interactions important discovery are made, which will aid in reducing the pain and suffering caused by cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA023168-34
Application #
8681161
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
34
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Purdue University
Department
Type
DUNS #
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Orellana, Esteban A; Tenneti, Srinivasarao; Rangasamy, Loganathan et al. (2017) FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med 9:
Wyatt-Johnson, Season K; Herr, Seth A; Brewster, Amy L (2017) Status Epilepticus Triggers Time-Dependent Alterations in Microglia Abundance and Morphological Phenotypes in the Hippocampus. Front Neurol 8:700
Han, Ning; Pang, Liang; Xu, Jun et al. (2017) Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors. Mol Pharm 14:1538-1547
Wu, M-J; Kim, M R; Chen, Y-S et al. (2017) Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKC? pathway. Oncogene 36:3193-3206
Jang, Yumi; Rao, Xiayu; Jiang, Qing (2017) Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. J Nutr Biochem 46:49-56
Li, Jie; Wang, Ruixin; Kong, Yifan et al. (2017) Targeting Plk1 to Enhance Efficacy of Olaparib in Castration-Resistant Prostate Cancer. Mol Cancer Ther 16:469-479
Wang, Siwen; Xing, Zheng; Pascuzzi, Pete E et al. (2017) Metabolic Adaptation to Nutrients Involves Coregulation of Gene Expression by the RNA Helicase Dbp2 and the Cyc8 Corepressor in Saccharomyces cerevisiae. G3 (Bethesda) 7:2235-2247
Yue, Feng; Bi, Pengpeng; Wang, Chao et al. (2017) Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun 8:14328
Li, Guo; Low, Philip S (2017) Synthesis and evaluation of a ligand targeting the ? and ? opioid receptors for drug delivery to lung cancer. Bioorg Med Chem Lett 27:2074-2078
Chen, I-Hsuan; Xue, Liang; Hsu, Chuan-Chih et al. (2017) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A 114:3175-3180

Showing the most recent 10 out of 370 publications