Drug Delivery and Molecular Sensing Research Program: Project Summary The Drug Delivery and Molecular Sensing (DDMS) Program serves as the technology arm of the PCCR, enabling advances in imaging, separations, biosensing and targeted delivery, that can be applied toward basic discoveries and translational efforts in cancer research. DDMS is comprised of 19 faculty members from 11 Purdue academic departments. DDMS provides collective expertise in cellular and tissue imaging, design of drug delivery vehicles and biomimetic platforms for drug testing, and novel bioanalytical methods that couple synergetically with other PCCR Research Programs and that advance our understanding of cancer-driven processes at the molecular level. During this last CCSG funding period, five new members were recruited from the applied sciences and engineering departments, further increasing DDMS's diverse strengths in biomedical imaging, bioanalytical separations, and in vitro testing. DDMS members share a common thread in the invention and application of new technologies for cancer detection, and for enhancing the effects of cancer treatment. DDMS has been highly productive in this regard, having producing 519 papers between 2010 and May 2014, 20% representing collaborative interactions with PCCR members and other NCI-designated cancer centers. DDMS efforts are sustained by $4.1 million of direct cost, peer-reviewed extramural support. DDMS is structured around three Research Themes: (1) Imaging Tools for Cancer Biology and Clinical Cancer Analysis, with breakthroughs in the imaging of advanced brain cancers and in the discovery of new metabolite-based markers associated with cancer progression; (2) Technologies for Investigating Biomolecular Processes and Biomarker Detection, which has produced novel methods for decoding epigenetic pathways and detecting RNA transcripts in live cells, and new platforms for detecting rare cancer cells from clinical blood samples or for evaluating the impact of cancer therapy on resected tissue samples; and (3) Molecular Conjugates and Materials for Drug Delivery, which has discovered and validated molecular delivery systems for new targets at the interface of cancer and immunology, and targeting ligands for different cancer types. All of these research efforts have resulted in new collaborations with PCCR's other Research Programs (e.g. CIS, MC, and CSB) and have been critically supported by PCCR Shared Resources; moreover, several research advances have resulted in the creation of new startup companies and the generation of intellectual property. DDMS Program Leaders have been active in renewing directions by organizing topical workshops, recruiting and providing mentorship to new members with cancer-focused research projects, in cooperation with the PESO Discovery Group, and assembling teams around cancer-related themes that target the submission of multi-investigator research grants. Examples include in vitro testing platforms that can address unmet needs in drug delivery research, spatiotemporal analysis of metabolite-based cancer markers based on multimodal imaging, and 3-D tissue culture models for investigating microenvironmental effects on vasculogenesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA023168-38S1
Application #
9736281
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Ptak, Krzysztof
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
38
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Purdue University
Department
Type
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Lin, Clement; Wu, Guanhui; Wang, Kaibo et al. (2018) Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures. Angew Chem Int Ed Engl 57:10888-10893
Hsu, Alan Y; Gurol, Theodore; Sobreira, Tiago J P et al. (2018) Development and Characterization of an Endotoxemia Model in Zebra Fish. Front Immunol 9:607
Li, Zhiguo; Kong, Yifan; Song, Longzhen et al. (2018) Plk1-Mediated Phosphorylation of TSC1 Enhances the Efficacy of Rapamycin. Cancer Res 78:2864-2875
Xiong, Yan; Yue, Feng; Jia, Zhihao et al. (2018) A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 1863:409-419
Mani, Saravana Kumar Kailasam; Andrisani, Ourania (2018) Hepatitis B Virus-Associated Hepatocellular Carcinoma and Hepatic Cancer Stem Cells. Genes (Basel) 9:
Zhou, Wenqing; Pal, Arpita S; Hsu, Alan Yi-Hui et al. (2018) MicroRNA-223 Suppresses the Canonical NF-?B Pathway in Basal Keratinocytes to Dampen Neutrophilic Inflammation. Cell Rep 22:1810-1823
Dayal, Neetu; Opoku-Temeng, Clement; Hernandez, Delmis E et al. (2018) Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines. Future Med Chem 10:823-835
Onel, Buket; Carver, Megan; Agrawal, Prashansa et al. (2018) The 3'-end region of the human PDGFR-? core promoter nuclease hypersensitive element forms a mixture of two unique end-insertion G-quadruplexes. Biochim Biophys Acta Gen Subj 1862:846-854
Sorlien, Erin L; Witucki, Mary A; Ogas, Joseph (2018) Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio. J Vis Exp :
Mani, Saravana Kumar Kailasam; Andrisani, Ourania (2018) Interferon signaling during Hepatitis B Virus (HBV) infection and HBV-associated hepatocellular carcinoma. Cytokine :

Showing the most recent 10 out of 436 publications