The Flow Cytometry Shared Resource offers Cancer Center users multi-parametric evaluation and high speed enrichment of phenotypically distinct cell populations using flow cytometry. For analytical flow cytometry, investigators have a choice of full-service analysis, or receiving training and then independent use of the two analytical flow cytometers (BD FACSort and BD FACSCanto). Investigator training and consulting is also provided on analytical software including CellQuest, FlowJo, and ModFitLT. For high-speed cell sorting, the facility provides experimental planning and full-service cell sorting by an expert operator, utilizing a BD FACSVantageSE DiVa. This instrument was recently equipped with a custom biosafety cabinet to enable sorting of cells infected with viral vectors, better protecting both the operator and the samples. The experienced Facility Director, Mr. Altman, provides investigators with extensive flow cytometry guidance, from experimental set-up, selection of reagents, setting gating or sorting parameters, data interpretation, and development of new methods. In the previous funding period. Flow Cytometry (previously the major part of the """"""""High Throughput Cell Analysis"""""""" Shared Resource) performed key experiments described in at least 83 publications form Cancer Center members. The Resource is widely used, as in the past year, services were provided for 32 Cancer Center members, representing all four Programs. Plans for future development of the Resource include upgrading the current Flow Cytometers, and acquisition of a low-speed microfluidic sorter that can sort much lower numbers of cells and apply substantially lower shear forces than current instruments. This will be particularly useful for small biopsy samples or sorting for rare slow-growing tumor-initiating cells. In general, experiments performed in the Shared Resource are becoming more operator intensive, and the facility has reached the point where a second staff member is needed for sufficient capacity and optimal support for a diverse and growing base of users. Thus, partial salary support is requested for this technician. $109,057 in CCSG support is requested in the first year, representing 27.3% of the total annual operating budget of the Flow Cytometry Shared Resource.

Public Health Relevance

Flow cytometry enables the analysis of the constituents in complex populations of cells, or the sorting and isolation of particular cells that can shed light on the mechanisms of normal and aberrant cell growth. Centralized and shared flow cytometers under expert supervision can efficiently support a wide range of Cancer Center research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Barile, Elisa; Marconi, Guya D; De, Surya K et al. (2017) hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents. ACS Chem Biol 12:444-455
Attali, Ilan; Tobelaim, William Sam; Persaud, Avinash et al. (2017) Ubiquitylation-dependent oligomerization regulates activity of Nedd4 ligases. EMBO J 36:425-440
Linares, Juan F; Cordes, Thekla; Duran, Angeles et al. (2017) ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma. Cell Metab 26:817-829.e6
Todoric, Jelena; Antonucci, Laura; Di Caro, Giuseppe et al. (2017) Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 32:824-839.e8
Scortegagna, Marzia; Berthon, Annabel; Settas, Nikolaos et al. (2017) The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2:
Jellusova, Julia; Cato, Matthew H; Apgar, John R et al. (2017) Gsk3 is a metabolic checkpoint regulator in B cells. Nat Immunol 18:303-312
Avellaneda Matteo, Diego; Grunseth, Adam J; Gonzalez, Eric R et al. (2017) Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. J Biol Chem 292:7971-7983
Lee, Bongyong; Sahoo, Anupama; Marchica, John et al. (2017) The long noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-mRNA molecules. Sci Adv 3:e1602505
McKeithan, Wesley L; Savchenko, Alex; Yu, Michael S et al. (2017) An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 8:766
Toome, Kadri; Willmore, Anne-Mari A; Paiste, Päärn et al. (2017) Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale 9:10094-10100

Showing the most recent 10 out of 483 publications