The goal of the Analytical Cytometry Core (ACC) is to provide leading-edge equipment and experienced operators to measure properties of, and isolate, cells and their components, and present the data for internal analysis and external review. Flow cytometry instrumentation in this core resource includes (1) high speed cell sorter (MoFlo) and (2) analytical cytometers (Cyan and FacsCalibur). Flow cytometry instrumentation provides investigators with the tools to analyze and isolate cells at speeds of up to 35,000 cells/second based on multiple fluorescent labels and light scatter properties with high yield (up to 90% based on speed) and extreme purity (99%). Owing to the capability to sort for four populations at a time on multiple parameters, the logistics and cost for the investigators are substantially reduced. A new high throughput plate sampler for the Cyan analyzer provides rapid screening capacity to investigators with large compound libraries who use flow cytometric analysis in compound identification;the addition of a Laser Scanning Cytometer (LSC) has expanded the analytical capacity offered by the ACC to include quantitative tissuebased fluorescence microscopy. This instrumentation collects both listmode fluorescence data and microscopic images and provides users with the capacity to correlate quantitative fluorescent data with qualitative microscopic images on large tissue sections. The LSC is run by specially trained users and managed by a dedicated operator. ACC instrumentation is subject to weekly quality control assessment and routine preventive maintenance and calibration. Data generated in the Core is available through the BRI-net server for further analysis and preparation for presentation or publication. Network-based data processing software is offered by the core and a Laboratory Information Management System (LIMS) is being developed to help track experiment-related meta data and archived file retrieval. During FY 2006, the ACC was used by 44 Cancer Center members from all 5 programs and 3 non-aligned members (64% peer-reviewed usage). Annual budget for this core is $401,799 (43% institutional, 40% user fees);17% ($70,100) is requested from the CCSG.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
City of Hope/Beckman Research Institute
United States
Zip Code
Gu, Ying; Zhang, Jiawei; Ma, Xiaoxiao et al. (2017) Stabilization of the c-Myc Protein by CAMKII? Promotes T Cell Lymphoma. Cancer Cell 32:115-128.e7
Cao, Pengpeng; Mooney, Rachael; Tirughana, Revathiswari et al. (2017) Intraperitoneal Administration of Neural Stem Cell-Nanoparticle Conjugates Targets Chemotherapy to Ovarian Tumors. Bioconjug Chem 28:1767-1776
Mohanty, Suchismita; Mohanty, Atish; Sandoval, Natalie et al. (2017) Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines. Leuk Lymphoma 58:676-688
Wittenberg, Elaine; Ferrell, Betty; Koczywas, Marianna et al. (2017) Pilot Study of a Communication Coaching Telephone Intervention for Lung Cancer Caregivers. Cancer Nurs :
Yuan, Yuan; Vora, Nilesh; Sun, Can-Lan et al. (2017) Association of Pre-Chemotherapy Peripheral Blood Pro-Inflammatory and Coagulation Factors with Physical Function in Women with Breast Cancer. Oncologist 22:1189-1196
Deng, Ruishu; Hurtz, Christian; Song, Qingxiao et al. (2017) Extrafollicular CD4+ T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nat Commun 8:978
He, Zhiheng; Ma, Jian; Wang, Ruiqing et al. (2017) A two-amino-acid substitution in the transcription factor ROR?t disrupts its function in TH17 differentiation but not in thymocyte development. Nat Immunol 18:1128-1138
Kortylewski, Marcin; Moreira, Dayson (2017) Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66:979-988
Somlo, George; Frankel, Paul H; Arun, Banu K et al. (2017) Efficacy of the PARP Inhibitor Veliparib with Carboplatin or as a Single Agent in Patients with Germline BRCA1- or BRCA2-Associated Metastatic Breast Cancer: California Cancer Consortium Trial NCT01149083. Clin Cancer Res 23:4066-4076
Slavin, Thomas P; Neuhausen, Susan L; Nehoray, Bita et al. (2017) The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes. Fam Cancer :

Showing the most recent 10 out of 1277 publications