The Analytical Pharmacology Core Facility (APCF) encourages and facilitates collaborative research among COHCCC basic scientists and clinicians by providing a wide range of analytical and consultative services. APCF assists with the design and conduct of pharmacokinetic studies for clinical and preclinical investigations. Primary services provided are: 1) quantitative assay development and sample analysis (LCMS/ MS, GC/MS, AAS, and HPLC) of drugs, biomarkers, and related compounds, and 2) study design and expert analysis of pharmacokinetic and metabolite data. APCF is located in the Shapiro Building and all of the major analytical equipment is consolidated into a contiguous suite of rooms. The most heavily utilized major equipment within the core are the 3 LC-MS/MS instruments, including a Micromass Quattro Ultima triple quad, a Waters Quattro Premier XE triple quad, and an AB Sciex QTRAP 5500. Each of these instruments includes different HPLC components with unique features that provide greater flexibility, and each of the systems provides state-of-the-art selectivity and sensitivity for analytes in complex biological matrices. Instrument control and data acquisition for the Micromass and Waters systems are coordinated through separate MassLynx-NT Workstations running MassLynx and QuanLynx software. MetaboLynx software is also available for the Quattro Premier XE to aid in metabolite identification. Instrument control and data analysis for the QTRAP 5500 is performed on a dedicated workstation running Analyst software. Additional core equipment includes: a Shimadzu Model QP-5000 El gas chromatograph/mass spectrometer, interfaced directly to a dedicated PC running CLASS-5000 software;a Perkin Elmer AAnalyst 300 AAS with an HGA 800 graphite furnace for determination of metals and metal containing compounds;and three complete HPLC systems consisting of six solvent delivery modules (4 Shimadzu LC-IOA's, 2 Shimadzu LClOAD's). HPLC detection capabilities cover a wide range of currently available methods, including UV/Vis (Shimadzu SPD-10AV), fluorescence (Shimadzu RF-10A), electrochemical (ESA models 51 OOA and 5200A), and photodiode array (Waters Acquity PDA) detection systems. Between July 1, 2010 and June 30, 2011, a total of 13 analytical methods were developed or re-initiated, 2657 samples analyzed, and 907 clinical samples processed during the reporting period.

Public Health Relevance

The overall goal of the Analytical Pharmacology Core Facility is to assist with the design and conduct of pharmacology studies and encourage collaborative research between basic scientists and clinicians utilizing state-of-the-art equipment and analytical software. This goal promotes the Cancer Center's mission of developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-30
Application #
8450535
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2017-11-30
Budget Start
2013-04-25
Budget End
2013-11-30
Support Year
30
Fiscal Year
2013
Total Cost
$73,439
Indirect Cost
$29,726
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Chen, Robert W; Palmer, Joycelynne M; Tomassetti, Sarah et al. (2018) Multi-center phase II trial of bortezomib and rituximab maintenance combination therapy in patients with mantle cell lymphoma after consolidative autologous stem cell transplantation. J Hematol Oncol 11:87
Romsdahl, Jillian; Blachowicz, Adriana; Chiang, Abby J et al. (2018) Characterization of Aspergillus niger Isolated from the International Space Station. mSystems 3:
Gong, Jun; Salgia, Ravi (2018) Managing Patients With Relapsed Small-Cell Lung Cancer. J Oncol Pract 14:359-366
Lueschow, Shiloh R; Stumphy, Jessica; Gong, Huiyu et al. (2018) Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis. PLoS One 13:e0204967
Gu, Long; Lingeman, Robert; Yakushijin, Fumiko et al. (2018) The Anticancer Activity of a First-in-class Small-molecule Targeting PCNA. Clin Cancer Res 24:6053-6065
Sen, Subha; He, Zhiheng; Ghosh, Shubhamoy et al. (2018) PRMT1 Plays a Critical Role in Th17 Differentiation by Regulating Reciprocal Recruitment of STAT3 and STAT5. J Immunol 201:440-450
Weitzel, Jeffrey N; Chao, Elizabeth C; Nehoray, Bita et al. (2018) Somatic TP53 variants frequently confound germ-line testing results. Genet Med 20:809-816
Ghose, Jayeeta; Viola, Domenico; Terrazas, Cesar et al. (2018) Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncoimmunology 7:e1486948
Aslamy, Arianne; Oh, Eunjin; Olson, Erika M et al. (2018) Doc2b Protects ?-Cells Against Inflammatory Damage and Enhances Function. Diabetes 67:1332-1344
Zhao, Xingli; Zhang, Zhuoran; Moreira, Dayson et al. (2018) B Cell Lymphoma Immunotherapy Using TLR9-Targeted Oligonucleotide STAT3 Inhibitors. Mol Ther 26:695-707

Showing the most recent 10 out of 1396 publications