The mission of the Bioinformatics Core (BIC) is to provide bioinformatics support for diverse approaches to cancer research in the COHCCC. The BIC collaborates with COHCCC governance committees to promulgate standards, optimize systems and minimize redundancy through continued integration of data, databases, applications and processes for enabling cost effective, collaborative, translational research. Since the last competitive renewal, the BIC has been working with experts in the field to establish a scalable high performance cyber-infrastructure equipped with close to 500 TB tiered storage repository with high bandwidth network connection, integrated cloud computing with internal TBs shared memory servers with more than 4000 hyper-threaded CPU and GPGPU processors, and external cloud computing to maximize both our infrastructure investment and provide infrastructure-on-demand. In addition, the BIC provides integrated laboratory information management systems (LIMS), which harbor research information portals shared among multiple core facilities (e.g., Functional Genomics and Genomic Sequencing, Drug Discovery and Structural Biology, Analytical Cytometry, Small Animal Imaging, and the developing Proteomics and Translational Research cores). The BIC also provides researchers with high-throughput biological data analysis, including integration with high-quality publicly available multi-disease, multi-cohort gene expression datasets. With highly-trained staff working in multidisciplinary teams, the BIC facilitates experimental design, QC/QA, data analysis, integration, annotation, dissemination, visualization and training for researchers. A new subscription-based chargeback policy was implemented in 2009 to offer tiered services to COHCCC members to be included in their grant proposals for adequate chargeback. The usage has nearly doubled from 45 subscribers in 2008 to 78 in 2010, and chargeback revenue has tripled from $46,487 in 2008 to $141,078 in 2010. Between 2007 and 2011, the BIC was used by a total of 88 principal investigators, 67 of whom are COHCCC members, and BIC staff collectively co-authored 52 peer-reviewed publications. The BIC's ongoing goal is to foster comprehensive bioinformatics support for researchers to enable collaborations among, basic, translational, clinical and population sciences researchers.

Public Health Relevance

The overall goal of the Bioinformatics Core facility is to provide COHCCC investigators with high-throughput biological data analysis tools, data management and cyber-infrastructure, and training to foster collaborations and develop modern computational techniques. This goal enables the Cancer Center's mission of developing innovative new disease-fighting strategies in the battle against cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
City of Hope/Beckman Research Institute
United States
Zip Code
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Magilnick, Nathaniel; Boldin, Mark P (2018) Molecular Moirai: Long Noncoding RNA Mediators of HSC Fate. Curr Stem Cell Rep 4:158-165
Yim, John H; Choi, Audrey H; Li, Arthur X et al. (2018) Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics. Clin Cancer Res :
Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung et al. (2018) JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27:136-150.e5
Slavin, Thomas P; Banks, Kimberly C; Chudova, Darya et al. (2018) Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J Clin Oncol :JCO1800328
Yun, Xinwei; Zhang, Keqiang; Wang, Jinhui et al. (2018) Targeting USP22 Suppresses Tumorigenicity and Enhances Cisplatin Sensitivity Through ALDH1A3 Downregulation in Cancer-Initiating Cells from Lung Adenocarcinoma. Mol Cancer Res 16:1161-1171
Herrera, Alex F; Rodig, Scott J; Song, Joo Y et al. (2018) Outcomes after Allogeneic Stem Cell Transplantation in Patients with Double-Hit and Double-Expressor Lymphoma. Biol Blood Marrow Transplant 24:514-520
Oh, Eunjin; Ahn, Miwon; Afelik, Solomon et al. (2018) Syntaxin 4 Expression in Pancreatic ?-Cells Promotes Islet Function and Protects Functional ?-Cell Mass. Diabetes 67:2626-2639

Showing the most recent 10 out of 1396 publications