; The overall goal of the Functional Genomics/Genomic Sequencing Core (FGC) is to provide state-of-the-art instruments, and expert scientific and technical advice in cancer genomics to COHCCC investigators. The FGC is equipped with major genomics instrumentation such as Affymetrix GeneChip? Analysis System, Agilent scanner/microarray system, Roche NimbleGen MS200 microarray scanner/system, lllumina HiScanSQ, HiSeq2000, GA llx and Roche 454 FLX. The core also has a next-generation ABI Taqman Realtime PCR system ViiA 7 for microarray validation. FGC provides comprehensive genomic support including transcriptomic and mlRNA/smRNA profiling by,microarrays and RNA-Seq/smRNA-Seq, ChlP-Chip/ChlPSeq, DNA methylation, DNA-Seq including whole genome and target genome sequencing, microarray genome-wide and custom genotyping, SNP/CNV, aCGH, RNAi and qRT-PCR. The FGC has recently set up numerous new genomic technologies and assays including microarray-coupled genome-wide gene expression profiling using difficult clinical formalin-fixed paraffin-embedded (FFPE) RNA samples, smRNASeq and RNA-Seq using FFPE-derived samples, microfluidic chip- and microarray-coupled single-cell genome-wide gene expression profiling. In addition, the FGC has implemented NimbleGen array-based comprehensive high-throughput arrays for relative methylation (CHARM), Affymetrix DMET and genomewide human SNP 6.0 array genotyping, and lllumina Infinium HumanMethylation450 BeadChip that interrogates more than 450,000 methylation sites across the whole human genome at single-nucleotide resolution. The FGC has supported numerous NIH/NCI projects resulting in high impact publications. In summary, the advanced genomic tools in the FGC allow COHCCC investigators to: 1) identify cancer gene mutations at high-throughput rates;2) map cancer genomic, transcriptomic and epigenomic fingerprints to identify genomic biomarkers for cancer early detection and diagnosis;3) identify novel therapeutic targets against cancers;and 4) predict responses to therapy.

Public Health Relevance

The overall goal of the Functional Genomics Core facility is to provide state-of-the-art instruments, scientific and technical advice in cancer genomics. These allow us to potentially identify markers for cancer early detection and the novel targets for cancer therapy. This goal enhances the Cancer Center's dedication to developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-30
Application #
8450537
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2017-11-30
Budget Start
2013-04-25
Budget End
2013-11-30
Support Year
30
Fiscal Year
2013
Total Cost
$255,379
Indirect Cost
$103,368
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Yim, John H; Choi, Audrey H; Li, Arthur X et al. (2018) Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics. Clin Cancer Res :
Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung et al. (2018) JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27:136-150.e5
Magilnick, Nathaniel; Boldin, Mark P (2018) Molecular Moirai: Long Noncoding RNA Mediators of HSC Fate. Curr Stem Cell Rep 4:158-165
Yun, Xinwei; Zhang, Keqiang; Wang, Jinhui et al. (2018) Targeting USP22 Suppresses Tumorigenicity and Enhances Cisplatin Sensitivity Through ALDH1A3 Downregulation in Cancer-Initiating Cells from Lung Adenocarcinoma. Mol Cancer Res 16:1161-1171
Herrera, Alex F; Rodig, Scott J; Song, Joo Y et al. (2018) Outcomes after Allogeneic Stem Cell Transplantation in Patients with Double-Hit and Double-Expressor Lymphoma. Biol Blood Marrow Transplant 24:514-520
Slavin, Thomas P; Banks, Kimberly C; Chudova, Darya et al. (2018) Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J Clin Oncol :JCO1800328
Shahin, Sophia A; Wang, Ruining; Simargi, Shirleen I et al. (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14:1381-1394

Showing the most recent 10 out of 1396 publications