; The overall goal of the Functional Genomics/Genomic Sequencing Core (FGC) is to provide state-of-the-art instruments, and expert scientific and technical advice in cancer genomics to COHCCC investigators. The FGC is equipped with major genomics instrumentation such as Affymetrix GeneChip? Analysis System, Agilent scanner/microarray system, Roche NimbleGen MS200 microarray scanner/system, lllumina HiScanSQ, HiSeq2000, GA llx and Roche 454 FLX. The core also has a next-generation ABI Taqman Realtime PCR system ViiA 7 for microarray validation. FGC provides comprehensive genomic support including transcriptomic and mlRNA/smRNA profiling by,microarrays and RNA-Seq/smRNA-Seq, ChlP-Chip/ChlPSeq, DNA methylation, DNA-Seq including whole genome and target genome sequencing, microarray genome-wide and custom genotyping, SNP/CNV, aCGH, RNAi and qRT-PCR. The FGC has recently set up numerous new genomic technologies and assays including microarray-coupled genome-wide gene expression profiling using difficult clinical formalin-fixed paraffin-embedded (FFPE) RNA samples, smRNASeq and RNA-Seq using FFPE-derived samples, microfluidic chip- and microarray-coupled single-cell genome-wide gene expression profiling. In addition, the FGC has implemented NimbleGen array-based comprehensive high-throughput arrays for relative methylation (CHARM), Affymetrix DMET and genomewide human SNP 6.0 array genotyping, and lllumina Infinium HumanMethylation450 BeadChip that interrogates more than 450,000 methylation sites across the whole human genome at single-nucleotide resolution. The FGC has supported numerous NIH/NCI projects resulting in high impact publications. In summary, the advanced genomic tools in the FGC allow COHCCC investigators to: 1) identify cancer gene mutations at high-throughput rates;2) map cancer genomic, transcriptomic and epigenomic fingerprints to identify genomic biomarkers for cancer early detection and diagnosis;3) identify novel therapeutic targets against cancers;and 4) predict responses to therapy.

Public Health Relevance

The overall goal of the Functional Genomics Core facility is to provide state-of-the-art instruments, scientific and technical advice in cancer genomics. These allow us to potentially identify markers for cancer early detection and the novel targets for cancer therapy. This goal enhances the Cancer Center's dedication to developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-30
Application #
8450537
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2017-11-30
Budget Start
2013-04-25
Budget End
2013-11-30
Support Year
30
Fiscal Year
2013
Total Cost
$255,379
Indirect Cost
$103,368
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Kuo, Ching-Ying; Cheng, Chun-Ting; Hou, Peifeng et al. (2016) HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget 7:34052-69
Nakamura, Ryotaro; La Rosa, Corinna; Longmate, Jeffrey et al. (2016) Viraemia, immunogenicity, and survival outcomes of cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial. Lancet Haematol 3:e87-98
Wittenberg, Elaine; Ferrell, Betty; Goldsmith, Joy et al. (2016) Family Caregiver Communication Tool: a new measure for tailoring communication with cancer caregivers. Psychooncology :
Zhou, Ting; Pan, Feiyan; Cao, Yan et al. (2016) R152C DNA Pol β mutation impairs base excision repair and induces cellular transformation. Oncotarget 7:6902-15
Sun, Virginia; Ruel, Nora; Chung, Vincent et al. (2016) Pilot study of an interdisciplinary supportive care planning intervention in pancreatic cancer. Support Care Cancer 24:3417-24
Li, Zhongqi; Oganesyan, Diana; Mooney, Rachael et al. (2016) L-MYC Expression Maintains Self-Renewal and Prolongs Multipotency of Primary Human Neural Stem Cells. Stem Cell Reports 7:483-95
Reid, Michael A; Lowman, Xazmin H; Pan, Min et al. (2016) IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes Dev 30:1837-51
Leung, Amy; Trac, Candi; Du, Juan et al. (2016) Persistent Chromatin Modifications Induced by High Fat Diet. J Biol Chem 291:10446-55
Thomas, Carissa M; Saulnier, Delphine M A; Spinler, Jennifer K et al. (2016) FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen 5:802-818
Champer, Jackson; Ito, James I; Clemons, Karl V et al. (2016) Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins. J Fungi (Basel) 2:

Showing the most recent 10 out of 1181 publications