The goal of the Analytical Cytometry Core (ACC) is to provide the COHCCC members, through its facilities, leading-edge equipment and experienced operators to measure properties of cells and their components, isolate those cells and their components and present the data acquired for internal analysis and external review. Flow cytometry instrumentation available through this core resource includes: 3 high speed cell sorters (MoFlo, BD FACS Aria SORP and BD FACS Aria 111), and 4 analytical cytometers (Cyan, Gallios, LSR Fortessa and C6). The flow cytometry instrumentation provides investigators with the tools to analyze and isolate cells at speeds of up to 20,000 cells/second based on multiple fluorescent labels (up to 18) and light scatter properties with high yield (up to 90% based on speed) and extreme purity (99%). Additionally, the BD Aha 11 SORP is contained in a biosafety cabinet and allows users to sort live (potentially infectious) samples. All instrumentation in the ACC is subject to either daily (sorters and Fortessa) or weekly (Gallios, CyAn, and C6) quality control assessment and routine preventive maintenance and calibration. All data generated in the ACC is available through the institutional cyber-infrastructure network for further analysis and preparation for presentation or publication. Network based data processing software is offered by the core and a Laboratory Information Management System (LIMS) is being developed to help track experiment related meta data and archived file retrieval. Another key role of ACC is to provide flow cytometry training from basic theory, experimental design, software usage and operation of the cytometers to COHCCC members.

Public Health Relevance

The overall goal of the Analytical Cytometry Core facility is to provide leading-edge equipment and experienced operators to measure properties of cells and their components, isolate those cells and present the data acquired for analysis and review. This goal promotes the Cancer Center's mission of developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-31
Application #
8764845
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
31
Fiscal Year
2014
Total Cost
$87,454
Indirect Cost
$35,398
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Mendez-Dorantes, Carlos; Bhargava, Ragini; Stark, Jeremy M (2018) Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32:524-536
Bzymek, Krzysztof P; Puckett, James W; Zer, Cindy et al. (2018) Mechanically interlocked functionalization of monoclonal antibodies. Nat Commun 9:1580
Nguyen, Huong Q; Ruel, Nora; Macias, Mayra et al. (2018) Translation and Evaluation of a Lung Cancer, Palliative Care Intervention for Community Practice. J Pain Symptom Manage 56:709-718
Satheesan, Sangeetha; Li, Haitang; Burnett, John C et al. (2018) HIV Replication and Latency in a Humanized NSG Mouse Model during Suppressive Oral Combinational Antiretroviral Therapy. J Virol 92:
Zhang, Jing; He, Zhiheng; Sen, Subha et al. (2018) TCF-1 Inhibits IL-17 Gene Expression To Restrain Th17 Immunity in a Stage-Specific Manner. J Immunol 200:3397-3406
Sun, Jie; He, Xin; Zhu, Yinghui et al. (2018) SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell 23:355-369.e9
Miao, Yifei; Ajami, Nassim E; Huang, Tse-Shun et al. (2018) Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 9:292
Sen, Subha; Wang, Fei; Zhang, Jing et al. (2018) SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate ROR?t activity in a PKC-?-dependent manner. Proc Natl Acad Sci U S A 115:E458-E467
Murad, John P; Kozlowska, Anna K; Lee, Hee Jun et al. (2018) Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 9:2268
Brown, Christine E; Aguilar, Brenda; Starr, Renate et al. (2018) Optimization of IL13R?2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 26:31-44

Showing the most recent 10 out of 1396 publications