Molecular-based imaging provides unique opportunities to assess the pharmacokinetics and targeting properties of r potential therapeutic agents, as well as to assess vital cellular processes in vivo. The ability to monitor the molecular processes of cancer through non-invasive imaging may provide critical information regarding the effects of therapy. In the context of pre-clinical research, the use of in vivo imaging permits the acquisition of a complete dynamic biodistribution study of a molecular tracer on an single animal, thereby reducing the number of animals required to reach a statistically adequate result. Often the imaging techniques and targeting agents that are tested in small animal imaging modalities are directly transferable to the clinical setting. The Small Animal Imaging Core (SAIC) is a shared resource dedicated to providing investigators access to state of the art small animal imaging capabilities for use in basic and translational research relevant to the mission of the City of Hope Cancer Center.
Specific aims of the SAIC include: (1) keeping abreast of the latest developments, current capabilities, and limitations of small animal imaging as pertains to cancer research;(2) implementing, developing, calibrating, maintaining, and operating relevant imaging systems within the context of a small animal imaging laboratory;and (3) optimizing the use of small animal imaging in research at City of Hope in collaboration with investigators. Core personnel currently include a Director, an imaging physicist, and a manager, all of whom are highly experienced in the use of imaging for research with animals. Small animal imaging systems in operation include two units for bioluminescence optical imaging (one has been modified for fluorescence imaging [IVIS 100, Caliper Life Sciences]);a gamma camera (y- IMAGER, Biospace, Inc.);a PET scanner (microPET R4, Siemens);and a CT scanner (microCAT II Hi Res, Siemens). The microPET and microCAT are readily used in tandem to generate co-registered functional anatomic PET/CT images. The Animal Resources Center has provided three rooms within the Parvin Biomedical Research Building for use by the SAIC (one room for the microPET, microCAT, and the y- IMAGER, and two rooms for the IVIS optical imaging instruments. A system has been developed for monitoring instrument usage and to bill users for a portion of the costs of the imaging procedures.

Public Health Relevance

The overall goal of the Small Animal Imaging core facility is to monitor molecular processes of cancer and cancer fighting agents via small animal imaging technologies. This goal enhances the Cancer Center's dedication to developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-31
Application #
8764850
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
31
Fiscal Year
2014
Total Cost
$44,687
Indirect Cost
$18,088
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Gu, Ying; Zhang, Jiawei; Ma, Xiaoxiao et al. (2017) Stabilization of the c-Myc Protein by CAMKII? Promotes T Cell Lymphoma. Cancer Cell 32:115-128.e7
Cao, Pengpeng; Mooney, Rachael; Tirughana, Revathiswari et al. (2017) Intraperitoneal Administration of Neural Stem Cell-Nanoparticle Conjugates Targets Chemotherapy to Ovarian Tumors. Bioconjug Chem 28:1767-1776
Mohanty, Suchismita; Mohanty, Atish; Sandoval, Natalie et al. (2017) Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines. Leuk Lymphoma 58:676-688
Wittenberg, Elaine; Ferrell, Betty; Koczywas, Marianna et al. (2017) Pilot Study of a Communication Coaching Telephone Intervention for Lung Cancer Caregivers. Cancer Nurs :
Yuan, Yuan; Vora, Nilesh; Sun, Can-Lan et al. (2017) Association of Pre-Chemotherapy Peripheral Blood Pro-Inflammatory and Coagulation Factors with Physical Function in Women with Breast Cancer. Oncologist 22:1189-1196
Deng, Ruishu; Hurtz, Christian; Song, Qingxiao et al. (2017) Extrafollicular CD4+ T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nat Commun 8:978
He, Zhiheng; Ma, Jian; Wang, Ruiqing et al. (2017) A two-amino-acid substitution in the transcription factor ROR?t disrupts its function in TH17 differentiation but not in thymocyte development. Nat Immunol 18:1128-1138
Kortylewski, Marcin; Moreira, Dayson (2017) Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66:979-988
Somlo, George; Frankel, Paul H; Arun, Banu K et al. (2017) Efficacy of the PARP Inhibitor Veliparib with Carboplatin or as a Single Agent in Patients with Germline BRCA1- or BRCA2-Associated Metastatic Breast Cancer: California Cancer Consortium Trial NCT01149083. Clin Cancer Res 23:4066-4076
Slavin, Thomas P; Neuhausen, Susan L; Nehoray, Bita et al. (2017) The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes. Fam Cancer :

Showing the most recent 10 out of 1277 publications