The Jackson Laboratory (TJL) Cancer Center has 58 members organized into one Research Program, Modeling Cancer: Stem Cells to Therapy. Research is focused on understanding the fundamental mechanisms of cancer initiation and progression in the context of mouse biology and genomics. The mouse is the best experimental mammalian system for examining cancer both at the level of individual genes that participate in cancer initiation and at the genome-wide scale that influences individual susceptibility. Research performed at TJL Cancer Center draws on the unparalleled mouse resources supported by the Center, and in turn enhances both the genetic and information resources maintained at TJL for use by TJL Cancer Center members and the wider cancer research community. The cutting edge instrumentation and technically sophisticated Scientific Services supported by the Cancer Center enable all members to conduct experiments that may require expertise and equipment that is not available in their own laboratories. The scientific leadership of TJL has direct oversight of the Cancer Center. Dr. Richard Woychik is Director of TJL and the Cancer Center. Dr. Barbara Knowles is Vice President for Education and Collaborations of TJL and Deputy Director and Program Leader of the Cancer Center. They receive external advice from the Board of Scientific Overseers for TJL and the Cancer Center. Several internal advisory committees composed of Cancer Center members and senior managers ensure that the Cancer Center is a priority in budgeting, recruiting, and overall operations at TJL. Support is requested for Scientific Resources and Services: a) the Mouse Models Resource,, which provides genetically defined mice to Cancer Center Members;b) Computational Sciences, for expertise and analytical tools for advanced computational and statistical analysis;c) Genome Sciences, for tools for genome scanning, allele typing, and sequencing;d) Histopathology and Microscopy Sciences, for electron and light microscopy, cytogenetics, necropsy and histology;e) Phenotyping Sciences for gene expression, molecular biology, flow cytometry, and protein chemistry;f) Reproductive Sciences for cell biology and microinjection services, and g) Reproductive Sciences for rederivation, cryopreservation and reconstitution of mice. Funds are also requested for planning, emphasizing translational and transdisciplinary research. Developmental funds are requested for a pilot project program to stimulate new cancer research opportunities and for new investigators who will bring additional strength to TJL Cancer Center's focus on cancer in the context of mouse biology and genomics.

Public Health Relevance

to public health: More than 1.3 million people in the United States are likely to be diagnosed with cancer this year. Real prevention and cure depends on identifying individuals at risk and on effective treatment at the earliest stages. TJL Cancer Center performs basic research to support these aims.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Marino, Michael A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Song, Delu; Grieco, Steve; Li, Yafeng et al. (2014) A murine RP1 missense mutation causes protein mislocalization and slowly progressive photoreceptor degeneration. Am J Pathol 184:2721-9
Chow, Kin-Hoe; Shin, Dong-Mi; Jenkins, Molly H et al. (2014) Epigenetic states of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity. Cancer Res 74:4864-74
King Jr, Lloyd E; Silva, Kathleen A; Kennedy, Victoria E et al. (2014) Lack of response to laser comb in spontaneous and graft-induced alopecia areata in C3H/HeJ mice. J Invest Dermatol 134:264-6
Low, Benjamin E; Krebs, Mark P; Joung, J Keith et al. (2014) Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci 55:387-95
Potter, Christopher S; Wang, Zhe; Silva, Kathleen A et al. (2014) Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling. PLoS One 9:e85666
Hosur, Vishnu; Johnson, Kenneth R; Burzenski, Lisa M et al. (2014) Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc Natl Acad Sci U S A 111:E2200-9
Roderick, Justine E; Tesell, Jessica; Shultz, Leonard D et al. (2014) c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123:1040-50
Korstanje, Ron; Caputo, Christina R; Doty, Rosalinda A et al. (2014) A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen ?3?4?5(IV) trimers. Kidney Int 85:1461-8
Grubb, Stephen C; Bult, Carol J; Bogue, Molly A (2014) Mouse phenome database. Nucleic Acids Res 42:D825-34
Inaki, Koichiro; Menghi, Francesca; Woo, Xing Yi et al. (2014) Systems consequences of amplicon formation in human breast cancer. Genome Res 24:1559-71

Showing the most recent 10 out of 736 publications