The Jackson Laboratory Cancer Center (JAXCC) is undergoing a profound expansion of its membership, driven by new cancer-focused leadership and the opening of the JAX Genomic Medicine campus. Combined with the revitalization of the program at JAX Mammalian Genetics (Bar Harbor), the JAX will more than triple the cancer-focused faculty. The recruitment of eight new members since January 2012, when Dr. Liu became the JAXCC Director demonstrates the feasibility of this plan. The new JAXCC members bring new cancer research and technological expertise and a strong translational research capability to the Cancer Center. Institutional commitment to these new investigators is estimated at $19 million over the next five years. Developmental funds are a crucial factor in assuring the JAXCC's continued growth and productivity. In the previous grant cycle, new investigator funds were used to support seven junior faculty members. Funds are requested for partial support of new investigators, which will be leveraged by significant institutional commitment of funds. The strategic plan calls for the recruitment of 8 additional JAXCC members over the next 5 years, with institutional commitment estimated at $22 million. The overall goals in recruiting to the Cancer Center, determined in consultation with internal and external advisory committees include: 1) expanding the focus on cancer systems biology and cancer genomics;2) engaging translational sciences that include cancer pharmacology/systems pharmacology, chemical biology, and molecular pathology to enrich the basic science focus;and 3) strategically recruiting faculty who will strengthen orthogonal approaches to cancer, such as experts in systems computational biology, and aging. The result will be a cancer focus that comprises research focused on human genetics and genomics in Connecticut, tightly integrated with mouse genomics expertise in Maine to model the complexity of the human cancer genome. The pilot project program is an essential part of the plan to achieve the JAXCC's strategic goals. Projects are awarded based on the quality of the science, their anticipated contribution to one or more strategic goals, and the plan for securing federal funding, especially from NCI, for the mature project. In the previous grant cycle, 12 proposals were funded, including 9 since 2012. CCSG ($156,556) and institutional ($367,645) funds supported the project. In total, the funded projects support collaborations among 9 JAXCC members and 8 external institutions. One publication has resulted and three are in preparation. Nine grant proposals based on those pilots have been submitted to peer-reviewed agencies to date;2 were awarded, and 3 are under review. An increase in funds is requested for expansion of the pilot project program, with at least a one to one match from institutional funds. Projects that develop translational technologies that will move basic science to clinical impact are of special priority. Oversight of the program has been strengthened. The Scientific Executive Committee (SEC) sets the priorities for the annual proposal solicitation, works with applicants to refine a research plan that achieves the strategic goal(s), approves awards, and provides scientific guidance for the project's duration. Dr. Tennent, Associate Director for Research Administration, monitors progress of each pilot toward stated milestones and tracks resulting grant and manuscript submissions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA034196-29
Application #
8699302
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
29
Fiscal Year
2014
Total Cost
$396,393
Indirect Cost
$169,883
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Sharma, Manju; Braun, Robert E (2018) Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis. Development 145:
Shi, Jiayuan; Hua, Li; Harmer, Danielle et al. (2018) Cre Driver Mice Targeting Macrophages. Methods Mol Biol 1784:263-275
Hosur, Vishnu; Farley, Michelle L; Low, Benjamin E et al. (2018) RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 9:233
Johnson, Kenneth R; Gagnon, Leona H; Tian, Cong et al. (2018) Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 208:1165-1179
Dominguez, Pilar M; Ghamlouch, Hussein; Rosikiewicz, Wojciech et al. (2018) TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discov 8:1632-1653
Paigen, Kenneth; Petkov, Petko M (2018) PRDM9 and Its Role in Genetic Recombination. Trends Genet 34:291-300
Schloss, Jennifer; Ali, Riyasat; Racine, Jeremy J et al. (2018) HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. J Immunol 200:3353-3363
Nakatsuji, Teruaki; Chen, Tiffany H; Butcher, Anna M et al. (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Ye, Fengdan; Jia, Dongya; Lu, Mingyang et al. (2018) Modularity of the metabolic gene network as a prognostic biomarker for hepatocellular carcinoma. Oncotarget 9:15015-15026

Showing the most recent 10 out of 1156 publications