Introduction The Jackson Laboratory (J/ X) founded in 1929, is an independent, nonprofit institute dedicated to research and education in mammalian genetics and its application to precision medicine, as well as to empowering others in their scientific enterprise through access to our genetic resources. The JAX Cancer Center (JAXCC) comprises the cancer research and education activities at the Laboratory, as well as institutional shared resources that are used in cancer research. The large-scale distribution colonies that supply mice to the external research community are managed independently from the JAXCC by an administrative arm called JAX Mice &Services. The distribution colonies are financially self-supporting and, as a not-for-profit organization, generate surpluses that support fundamental research. The JAXCC occupies facilities on three JAX campuses, described below. The main JAX campus is an ~ 750,000 ft[2] facility in Bar Harbor Maine. We have launched a major expansion with the opening of a campus adjacent to the University of Connecticut Health Center (UCHC) in Farmington, Connecticut. This new campus, called The Jackson Laboratory for Genomic Medicine (JAX Genomic Medicine), will be a 189,000 ft[2] facility, to be completed in 2014. JAXCC members on this campus focus on human cancer genomics, computational biology and their application for precision medicine. The third campus, the JAX-West facility in Sacramento, California?has expanded to include a large, collaborative resource of patient-derived xenografted (PDX) primary human cancers, significantly enhancing the cancer resources ofthe JAXCC. The original campus in Bar Harbor has been renamed The Jackson Laboratory for Mammalian Genetics (JAX Mammalian Genetics) to reflect its role within the expanded three-campus framework. In total, we have an institution that has remarkable infrastructure to innovate and conduct science in mammalian genetics. The geographically distributed nature ofthe campuses is to our advantage in being able to capitalize on local (state) resources and talent, but unified by leadership, organization, and our focus on genetics and genomics.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Wang, Qianghu; Hu, Baoli; Hu, Xin et al. (2017) Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 32:42-56.e6
Herbert Pratt, C; Potter, Christopher S; Kuiper, Raoul V et al. (2017) Skin fragility in the wild-derived, inbred mouse strain Mus pahari/EiJ. Exp Mol Pathol 102:128-132
Burack, W Richard; Spence, Janice M; Spence, John P et al. (2017) Patient-derived xenografts of low-grade B-cell lymphomas demonstrate roles of the tumor microenvironment. Blood Adv 1:1263-1273
Hosur, Vishnu; Low, Benjamin E; Avery, Cindy et al. (2017) Development of Humanized Mice in the Age of Genome Editing. J Cell Biochem 118:3043-3048
Pratt, C Herbert; King Jr, Lloyd E; Messenger, Andrew G et al. (2017) Alopecia areata. Nat Rev Dis Primers 3:17011
Sutphin, George L; Backer, Grant; Sheehan, Susan et al. (2017) Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell 16:672-682
Verma, Mohit K; Clemens, Julia; Burzenski, Lisa et al. (2017) A novel hemolytic complement-sufficient NSG mouse model supports studies of complement-mediated antitumor activity in vivo. J Immunol Methods 446:47-53
Kooreman, Nigel G; de Almeida, Patricia E; Stack, Jonathan P et al. (2017) Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics. Cell Rep 20:1978-1990
Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M et al. (2017) Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing. Exp Mol Pathol 102:337-346
Hwang, Grace; Sun, Fengyun; O'Brien, Marilyn et al. (2017) SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144:1648-1660

Showing the most recent 10 out of 1039 publications