The Case CCC Hybridoma Core provides a cost-effective resource for generating, producing, and purifying monoclonal or polyclonal antibodies, as well as a repository of optimal technical capabilities and innovation regarding all aspects of antibody use. Highly specific monoclonal antibodies are an essential resource in Identifying the levels of expression, specific modifications, and tissue localization of proteins involved in all the functions that control cell growth, cell differentiation, and cell death. The Hybridoma Core continues to work on new methodology related to monoclonal antibodies. The most promising of these is an in vitro method, unique in that it takes advantage of a mouse knockout model that is expected to yield antibodies with IgG isotypes. In test experiments, spleen cells from these mice have remained highly viable in culture during antigen exposure, and have then been used successfully to perform high efficiency fusions resulting in hybridomas. Most importantly, they have confirmed that all of the hybridomas secrete antibodies with an IgG isotype, and in fact can detect no IgM production. The final steps before the Core offers this novel service will be to generate clones and determine the affinity of the resulting monoclonal. This technique should be particularly useful in developing antibodies against mouse antigens, or any antibodies that could be potentially deleterious to a mouse. It also has the potential to virtually eliminate the need for animal use in generating mouse monoclonal. Highly specific monoclonal antibodies are essential to identifying the functions and interactions of proteins involved in cell growth, cell differentiation and cell death, and therefore constitute a major contribution to cancer research. Since 2007, the Core has generated a total of 50 new monoclonal antibodies, and produced monoclonal in serum-free medium for 139 projects;approximately half of which are cancer-related. It is difficult to quantify the number of peer-reviewed publications the Core has facilitated;however, the number is certain to be an underestimate of its impact, because the usefulness of novel antibodies continues to accumulate over many years and in many different scientific areas. The Core primarily works with members from the Cell Death Regulation and Cancer Cell Signaling Programs producing antibodies to such proteins as: phospho-EI, Np65, K218me, and K221me2.

Public Health Relevance

The Case Comprehensive Cancer Center is Northeast Ohio's only NCI designated comprehensive cancer center providing bench-to-bedside medical research involving partnerships between basic, clinical and population scientists to speed translation of laboratory discoveries into new prevention/intervention and cancer treatments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA043703-23
Application #
8484958
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2018-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
23
Fiscal Year
2013
Total Cost
$32,715
Indirect Cost
$11,976
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Brown, Amanda L; Mark Brown, J (2017) Critical roles for ?/? hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. Biochim Biophys Acta 1862:1233-1241
Thiagarajan, Praveena S; Zheng, Qiao; Bhagrath, Manvir et al. (2017) STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocr Relat Cancer 24:415-426
Yao, Peng; Wu, Jiangbin; Lindner, Daniel et al. (2017) Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Res 45:7950-7964
Donnola, Shannon B; Dasenbrook, Elliott C; Weaver, David et al. (2017) Preliminary comparison of normalized T1 and non-contrast perfusion MRI assessments of regional lung disease in cystic fibrosis patients. J Cyst Fibros 16:283-290
Doherty, Mary R; Cheon, HyeonJoo; Junk, Damian J et al. (2017) Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proc Natl Acad Sci U S A 114:13792-13797
Saygin, Caner; Wiechert, Andrew; Rao, Vinay S et al. (2017) CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J Exp Med 214:2715-2732
Samaeekia, Ravand; Adorno-Cruz, Valery; Bockhorn, Jessica et al. (2017) miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway. Clin Cancer Res 23:1091-1103
Flocke, Susan A; Hoffman, Richard; Eberth, Jan M et al. (2017) The Prevalence of Tobacco Use at Federally Qualified Health Centers in the United States, 2013. Prev Chronic Dis 14:E29
Balanis, Nikolas; Carlin, Cathleen R (2017) Stress-induced EGF receptor signaling through STAT3 and tumor progression in triple-negative breast cancer. Mol Cell Endocrinol 451:24-30
Johansen, Mette L; Gao, Ying; Hutnick, Melanie A et al. (2017) Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo. Anal Chem 89:5932-5939

Showing the most recent 10 out of 1182 publications