The Case CCC Hybridoma Core provides a cost-effective resource for generating, producing, and purifying monoclonal or polyclonal antibodies, as well as a repository of optimal technical capabilities and innovation regarding all aspects of antibody use. Highly specific monoclonal antibodies are an essential resource in Identifying the levels of expression, specific modifications, and tissue localization of proteins involved in all the functions that control cell growth, cell differentiation, and cell death. The Hybridoma Core continues to work on new methodology related to monoclonal antibodies. The most promising of these is an in vitro method, unique in that it takes advantage of a mouse knockout model that is expected to yield antibodies with IgG isotypes. In test experiments, spleen cells from these mice have remained highly viable in culture during antigen exposure, and have then been used successfully to perform high efficiency fusions resulting in hybridomas. Most importantly, they have confirmed that all of the hybridomas secrete antibodies with an IgG isotype, and in fact can detect no IgM production. The final steps before the Core offers this novel service will be to generate clones and determine the affinity of the resulting monoclonal. This technique should be particularly useful in developing antibodies against mouse antigens, or any antibodies that could be potentially deleterious to a mouse. It also has the potential to virtually eliminate the need for animal use in generating mouse monoclonal. Highly specific monoclonal antibodies are essential to identifying the functions and interactions of proteins involved in cell growth, cell differentiation and cell death, and therefore constitute a major contribution to cancer research. Since 2007, the Core has generated a total of 50 new monoclonal antibodies, and produced monoclonal in serum-free medium for 139 projects;approximately half of which are cancer-related. It is difficult to quantify the number of peer-reviewed publications the Core has facilitated;however, the number is certain to be an underestimate of its impact, because the usefulness of novel antibodies continues to accumulate over many years and in many different scientific areas. The Core primarily works with members from the Cell Death Regulation and Cancer Cell Signaling Programs producing antibodies to such proteins as: phospho-EI, Np65, K218me, and K221me2.

Public Health Relevance

The Case Comprehensive Cancer Center is Northeast Ohio's only NCI designated comprehensive cancer center providing bench-to-bedside medical research involving partnerships between basic, clinical and population scientists to speed translation of laboratory discoveries into new prevention/intervention and cancer treatments.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
United States
Zip Code
Zhao, S; Sedwick, D; Wang, Z (2015) Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34:3885-94
Dermawan, Josephine Kam Tai; Gurova, Katerina; Pink, John et al. (2014) Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-?B, and cell-cycle progression in non-small cell lung cancer. Mol Cancer Ther 13:2203-14
Brubaker, Douglas; Difeo, Analisa; Chen, Yanwen et al. (2014) Drug Intervention Response Predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance. Pac Symp Biocomput :125-35
Yori, Jennifer L; Lozada, Kristen L; Seachrist, Darcie D et al. (2014) Combined SFK/mTOR inhibition prevents rapamycin-induced feedback activation of AKT and elicits efficient tumor regression. Cancer Res 74:4762-71
Dabir, Snehal; Kluge, Amy; McColl, Karen et al. (2014) PIAS3 activates the intrinsic apoptotic pathway in non-small cell lung cancer cells independent of p53 status. Int J Cancer 134:1045-54
Zapanta Rinonos, Serendipity; Rai, Urvashi; Vereb, Sydney et al. (2014) Sequential logic of polarity determination during the haploid-to-diploid transition in Saccharomyces cerevisiae. Eukaryot Cell 13:1393-402
Sizemore, Gina M; Sizemore, Steven T; Seachrist, Darcie D et al. (2014) GABA(A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J Biol Chem 289:24102-13
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Davuluri, Gangarao et al. (2014) Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J 28:2260-71
Dotan, Efrat; Devarajan, Karthik; D'Silva, A James et al. (2014) Patterns of use and tolerance of anti-epidermal growth factor receptor antibodies in older adults with metastatic colorectal cancer. Clin Colorectal Cancer 13:192-8
Arachiche, Amal; de la Fuente, MarĂ­a; Nieman, Marvin T (2014) Platelet specific promoters are insufficient to express protease activated receptor 1 (PAR1) transgene in mouse platelets. PLoS One 9:e97724

Showing the most recent 10 out of 975 publications