The Flow Cytometry Facility (FCF) is a Shared Resource that provides Cancer Center investigators access to high quality, cost effective flow cytometry services and technology. By providing these services and the scientific expertise necessary to effectively use this technology, the facility serves to enhance the scope and quality of cancer research performed at the University. With state of the art instrumentation, the facility offers high speed 4 way cell sorting and cloning, complex multicolor analytical services, multiplexing assays for soluble analytes, and imaging flow cytometry. This instrumentation is compatible with a wide variety of flow cytometric applications such as subpopulation identification/quantification, molecular detection (using labeled antibodies or other ligands or fluorescent protein reporter molecules), measurement of DNA and RNA content for cell cycle analysis, apoptosis, transcriptional activity, intracellular ion concentration (e.g. Ca++), cell viability, membrane potential, microarrays, and bead based immunoassays. In addition to the instrumentation, the highly experienced staff of the FCF provides consultation in experimental design, sample preparation and data analysis. Researchers have the option, once trained, of performing their own analysis or utilizing the expertise of the facility's staff to run their samples for them. Specialized training classes are offered for those researchers who wish to better understand the principles and techniques employed in this technology and prefer to directly acquire and/or analyze their own samples. The services and expertise offered by the FCF play a key role in the study of many types of cancer, especially hematological malignancies, as well as immune responses to cancers.

Public Health Relevance

Flow cytometry is a mainstay of research on the immune system, and has now broadened its utility to all aspects of cancer research where analysis of single cells is important. As we learn more about the heterogeneity of tumors, this becomes increasingly critical for modern cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-22
Application #
8566495
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
22
Fiscal Year
2013
Total Cost
$63,231
Indirect Cost
$25,808
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Banizs, Anna B; Huang, Tao; Nakamoto, Robert K et al. (2018) Endocytosis Pathways of Endothelial Cell Derived Exosomes. Mol Pharm :
Jia, Deshui; Augert, Arnaud; Kim, Dong-Wook et al. (2018) Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition. Cancer Discov 8:1422-1437
Manukyan, Arkadi; Kowalczyk, Izabela; Melhuish, Tiffany A et al. (2018) Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 119:4644-4655
Engelhard, Victor H; Rodriguez, Anthony B; Mauldin, Ileana S et al. (2018) Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J Immunol 200:432-442
Martins, André L; Walavalkar, Ninad M; Anderson, Warren D et al. (2018) Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Res 46:e9
Michaels, Alex D; Newhook, Timothy E; Adair, Sara J et al. (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24:1415-1425
Shi, Lei; Li, Kang; Guo, Yizhan et al. (2018) Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc Natl Acad Sci U S A 115:11808-11813
Yang, Jun; LeBlanc, Francis R; Dighe, Shubha A et al. (2018) TRAIL mediates and sustains constitutive NF-?B activation in LGL leukemia. Blood 131:2803-2815
Kulling, Paige M; Olson, Kristine C; Hamele, Cait E et al. (2018) Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 13:e0193429
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P et al. (2018) Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Proc Natl Acad Sci U S A 115:4992-4997

Showing the most recent 10 out of 539 publications