Since the last renewal, the previous Tissue Procurement Facility and Research Histology Shared Resource have merged and expanded their functions to form the Biorepository and Tissue Research Facility (BTRF), under new leadership. The BTRF makes human biospecimens available for basic, translational, and clinical research. It is the major conduit through which human tissue specimens are transferred from the Pathology, Surgery and other clinical departments to research labs at the University of Virginia (UVA), and is the major processor of human biospecimens (tissue, blood, urine) in support of clinical trials at UVA. In addition, this is the only shared research facility that supports standard histology services and complex histology-based analytic techniques for animal models and human tissues, including tissue microarray construction, laser microdissection, immunohistochemistry, digital slide scanning and reverse-phase protein microarrays. Expert histopathology support from Board-certified Anatomic Pathologists is provided for these activities through this Shared Resource. The biorepository and analytic services are often vertically integrated with each other to allow for "one-stop shopping" for investigators carrying out translational or clinical cancer research. BTRF services make possible new insights into cancer disease mechanisms by the analysis of tissues and biofluids, assist in the discovery and validation of new clinical cancer biomarkers, and support clinical trials of novel diagnostic tests and therapies for cancer.

Public Health Relevance

Analysis of human tissues is the conduit through which new knowledge about molecules and cells enters the realm of clinical practice. The BTRF provides both tissues and analytic tools to advance cancer diagnosis, prognosis, and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-23
Application #
8635293
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
23
Fiscal Year
2014
Total Cost
$80,690
Indirect Cost
$33,764
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Meisner, Joshua K; Annex, Brian H; Price, Richard J (2015) Despite normal arteriogenic and angiogenic responses, hind limb perfusion recovery and necrotic and fibroadipose tissue clearance are impaired in matrix metalloproteinase 9-deficient mice. J Vasc Surg 61:1583-94.e1-10
Zarling, Angela L; Obeng, Rebecca C; Desch, A Nicole et al. (2014) MHC-restricted phosphopeptides from insulin receptor substrate-2 and CDC25b offer broad-based immunotherapeutic agents for cancer. Cancer Res 74:6784-95
Henretta, Melissa S; Copeland, Amy R; Kelley, Sarah L et al. (2014) Perceptions of obesity and cancer risk in female bariatric surgery candidates: highlighting the need for physician action for unsuspectingly obese and high risk patients. Gynecol Oncol 133:73-7
Jones, Ryan; Libby, Bruce; Showalter, Shayna L et al. (2014) Dosimetric comparison of (192)Ir high-dose-rate brachytherapy vs. 50 kV x-rays as techniques for breast intraoperative radiation therapy: conceptual development of image-guided intraoperative brachytherapy using a multilumen balloon applicator and in-room Brachytherapy 13:502-7
Santen, Richard J (2014) Menopausal hormone therapy and breast cancer. J Steroid Biochem Mol Biol 142:52-61
Wang, Shaolin; Yang, Zhongli; Ma, Jennie Z et al. (2014) Introduction to deep sequencing and its application to drug addiction research with a focus on rare variants. Mol Neurobiol 49:601-14
Cohen, Jarish N; Tewalt, Eric F; Rouhani, Sherin J et al. (2014) Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS One 9:e87740
Newhook, Timothy E; Blais, Edik M; Lindberg, James M et al. (2014) A thirteen-gene expression signature predicts survival of patients with pancreatic cancer and identifies new genes of interest. PLoS One 9:e105631
Hubbard, Matthew A; Khalil, Ashraf A; Schoeff, Stephen S et al. (2014) Nanoimmunoassay to Detect Responses in Head and Neck Cancer: Feasibility in a Mouse Model. Otolaryngol Head Neck Surg 151:92-99
Wang, Chun-Chao; Janes, Kevin A (2014) Non-genetic heterogeneity caused by differential single-cell adhesion. Cell Cycle 13:2149-50

Showing the most recent 10 out of 187 publications