The Bioinformatics Core (BIC) will provide the hardware, software, and critical human expertise infrastructure necessary to manage, integrate, analyze, interpret, and disseminate data produced by Cancer Center investigators, and will provide much-needed bioinformatics and quantitative training in critically high demand among Cancer Center members. The BIC is staffed by experts who have years of collective experience in managing and analyzing large-scale, high-throughput biological data. The very nature of cancer research is evolving, driven by the ease and plummeting costs of generating vast amounts of sequence, expression, structure, and biochemical data. Extracting the most biological meaning from these data will require sophisticated bioinformatics expertise that most individual labs do not possess. Further, the size and complexity of these data requires robust data management planning, and funding agencies often require permanent archival and rapid public dissemination of high-throughput data to the broader cancer research community. Additionally, as cancer research continues to become more data-intensive, researchers often lack the bioinformatics and quantitative training that is increasingly essential. The BIC fills all of these gaps and will serve an absolutely essential role in the immediate and long-term realization of the Cancer Center's research mission.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-28
Application #
9626877
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
28
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148
Carlton, Anne L; Illendula, Anuradha; Gao, Yan et al. (2018) Small molecule inhibition of the CBF?/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol Oncol 149:350-360
Borten, Michael A; Bajikar, Sameer S; Sasaki, Nobuo et al. (2018) Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8:5319
Olson, Kristine C; Kulling Larkin, Paige M; Signorelli, Rossana et al. (2018) Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 111:551-562
Pfister, Katherine; Pipka, Justyna L; Chiang, Colby et al. (2018) Identification of Drivers of Aneuploidy in Breast Tumors. Cell Rep 23:2758-2769
Carhart, Miev Y; Schminkey, Donna L; Mitchell, Emma M et al. (2018) Barriers and Facilitators to Improving Virginia's HPV Vaccination Rate: A Stakeholder Analysis With Implications for Pediatric Nurses. J Pediatr Nurs 42:1-8
Hao, Yi; Bjerke, Glen A; Pietrzak, Karolina et al. (2018) TGF? signaling limits lineage plasticity in prostate cancer. PLoS Genet 14:e1007409
Obeid, Joseph M; Kunk, Paul R; Zaydfudim, Victor M et al. (2018) Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 67:161-174

Showing the most recent 10 out of 539 publications