The Bioinformatics Shared Resource (BSR) provides essential services and technical support for all aspects of bioinformatics for CSHL Cancer Center members. The pervasive need for Bioinformatics in the genomic era for all aspects of biological research makes it an essential tool for cancer researchers. The goal of the BSR is to give Cancer Center members access to state-of-the-art bioinformatics expertise and support. This includes consulting with Cancer Center members to find the best available bioinformatics software for their particular projects as well as developing new tools and techniques for Cancer Center members whose projects push the boundaries of what is currently available. Over the next five years, next-generation sequencing technology stands to revolutionize the scientific questions that can be addressed. The large volumes of data created will also necessitate an increased need for both basic and advanced bioinformatics support. The BSR is actively planning for the computational infrastructure that will be required to support these large-scale genomics projects. A major goal for the BSR is the development of sophisticated software tools that will enable Cancer Center members to perform much of the routine analysis themselves, under the guidance of BSR staff. BSR members can then focus their consulting efforts on the higher-level analyses, which often require a customized approach for each project.

Public Health Relevance

The BSR is an essential service for the CSHL Cancer Center, providing the resources, tools and analysis services required for the high-level genomic research being conducted by Cancer Center investigators, and importantly, for facilitating collaborative projects.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cold Spring Harbor Laboratory
Cold Spring Harbor
United States
Zip Code
Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie et al. (2016) Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein. BMC Mol Biol 17:15
Fagegaltier, Delphine; Falciatori, Ilaria; Czech, Benjamin et al. (2016) Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. Genes Dev 30:1623-35
Hossain, Manzar; Stillman, Bruce (2016) Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. Elife 5:
Ho, Joanne M; Reynolds, Noah M; Rivera, Keith et al. (2016) Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. ACS Synth Biol 5:163-71
Sheu, Yi-Jun; Kinney, Justin B; Stillman, Bruce (2016) Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Res 26:315-30
Arun, Gayatri; Diermeier, Sarah; Akerman, Martin et al. (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34-51
Hwang, Chang-Il; Boj, Sylvia F; Clevers, Hans et al. (2016) Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 238:197-204
Baker, Lindsey A; Tiriac, Hervé; Clevers, Hans et al. (2016) Modeling pancreatic cancer with organoids. Trends Cancer 2:176-190
Diermeier, Sarah D; Chang, Kung-Chi; Freier, Susan M et al. (2016) Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration. Cell Rep 17:261-74
Nomakuchi, Tomoki T; Rigo, Frank; Aznarez, Isabel et al. (2016) Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat Biotechnol 34:164-6

Showing the most recent 10 out of 237 publications