Primary human xenografts are human cancer tissues which are xenotransplanted into immunodeficient mice. Numerous studies have demonstrated that these xenografts much more closely resemble primary human cancers at the histological and molecular level then do xenografts generated from cell lines propagated in vitro (f-3). Primary xenograft models have proven most valuable in studying tumor biology and cellular heterogeneity, as well as for evaluating the efficacy of therapeutic agents. A prime example of the utility of primary human xenografts has been In the identification and characterization of human cancer stem cells (CSCs). UMCCC investigators used these models to report the Initial identification of CSCs in cancers of the breast, pancreas, head and neck and ovaries (4-6). Subsequently, xenograft models have been utilized by other UMCCC investigators to investigate CSCs in the brain, liver, adrenal and lung cancers {9-11). In addition to identifying CSC populations In various tumor types, these models have proven invaluable in studying the pathways which regulate them and in developing CSC-based therapeutics. Indeed, agents targeting CSCs regulatory pathways including Notch, Hedgehog, HER2/Akt, Wnt and cytokine signaling are being evaluated In multiple tumor types by UMCCC investigators. These preclinical studies have already led to the development of several early stage clinical trials targeting these CSC pathways. An important component of the translational oncology research strategy involves the development and testing of molecular targeted therapeutics In these xenograft models.

Public Health Relevance

The Primary Tumor Xenograft Core will establish individual patient tumors in mice to allow the study of individual patient tumors lo best design personalized therapeutics. A broad range of tumors will be analyzed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA046592-24
Application #
8300293
Study Section
Subcommittee G - Education (NCI)
Project Start
2012-06-01
Project End
2017-05-31
Budget Start
2012-09-21
Budget End
2013-05-31
Support Year
24
Fiscal Year
2012
Total Cost
$51,291
Indirect Cost
$18,285
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Mendiratta-Lala, Mishal; Masch, William; Shankar, Prasad R et al. (2018) MR Imaging Evaluation of Hepatocellular Carcinoma Treated with Stereotactic Body Radiation Therapy (SBRT): Long Term Imaging Follow-Up. Int J Radiat Oncol Biol Phys :
Kim, Yeung-Hyen; Zhu, Lingqiao; Pyaram, Kalyani et al. (2018) PLZF-expressing CD4 T cells show the characteristics of terminally differentiated effector memory CD4 T cells in humans. Eur J Immunol 48:1255-1257
Davis, Elizabeth J; Griffith, Kent A; Kim, Edward J et al. (2018) A Phase II Study of Biweekly Cisplatin, Fixed-Dose-Rate Gemcitabine and Infusional 5-Fluorouracil in Patients With Metastatic Pancreatic and Biliary Cancers. Am J Clin Oncol 41:128-132
Rosselli-Murai, Luciana K; Yates, Joel A; Yoshida, Sei et al. (2018) Loss of PTEN promotes formation of signaling-capable clathrin-coated pits. J Cell Sci 131:
Tamura, Shuzo; Wang, Yin; Veeneman, Brendan et al. (2018) Molecular Correlates of In Vitro Responses to Dacomitinib and Afatinib in Bladder Cancer. Bladder Cancer 4:77-90
Mendiratta-Lala, Mishal; Gu, Everett; Owen, Dawn et al. (2018) Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1063-1069
Cilliers, Cornelius; Menezes, Bruna; Nessler, Ian et al. (2018) Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival. Cancer Res 78:758-768
Lorenz, Daniel A; Vander Roest, Steve; Larsen, Martha J et al. (2018) Development and Implementation of an HTS-Compatible Assay for the Discovery of Selective Small-Molecule Ligands for Pre-microRNAs. SLAS Discov 23:47-54
Zhou, Bing; Hu, Jiantao; Xu, Fuming et al. (2018) Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. J Med Chem 61:462-481
Chockley, Peter J; Chen, Jun; Chen, Guoan et al. (2018) Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J Clin Invest 128:1384-1396

Showing the most recent 10 out of 1493 publications