Objective: The Flow Cytometry Shared Resource (FCSR) supports translational and clinical cancer research projects of University of Colorado Cancer Center (UCCC) members with flow cytometric analysis, high-speed cell sorting, microscopy, and multiplexed fluorescent microsphere assays. Services and Technologies: FCSR provides a wide range of assays particulariy pertinent to cancer research, including cell cycle, cell proliferation, apoptosis, cell viability, cell signaling, stem cell detection, fluorescent protein analysis, and cell phenotyping along with cell sorting. Housing 4 high-speed sorters, 8 color analyzers, 1 Luminex system, 1 cell counter, 1 imaging cytometer, 6 microscopes, and 1 confocal scanning system, FCSR has 5,000 and 13,500 hours/year of cell sorting and analysis capacity, respectively;1,500 hours/year of Luminex capacity;and 12,000 hours/year of microscope-based research capacity. Consultation and Training: FCSR provides a consultation to help those members with little flow cytometry or immunology background to design appropriate experiments. In addition, regular training sessions are held to inform UCCC members and the investigators in their laboratories of new techniques and FCSR capabilities. Many investigators also call FCSR on an ad hoc basis for advice on performing experiments. Utilization: FCSR is among the most popular and most highly used of the UCCC shared resources. More than 100 different Cancer Center members from 6 programs and 7 consortium institutions use either the UCD or the NJH branch facilities. Management and Finances: This resource is UCCC-managed. Currently, 7 1% of the operating budget comes from charge backs to UCCC members who represent 76% of Shared Resource users. FCSR requests $220,370 CCSG support for 2 1% of its operating budget Increased funding will expand assay capabilities and will maintain the FCSR's place at the forefront of cytometry technology as the first Beckman Coulter Cytometry Center of Excellence.

Public Health Relevance

Using flow cytometric analysis, high-speed cell sorting, microscopy, and multiplexed fluorescent microsphere assays, the Flow Cytometry Shared Resource can perform a wide range of assays supporting cancer research, including cell cycle, cell proliferation, apoptosis, cell viability, cell signaling, stem cell detection, fluorescent protein analysis, and cell phenotyping. These assays are crucial to understanding how cancer derails normal cellular processes to cause disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA046934-24
Application #
8465408
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-06
Project End
2017-01-31
Budget Start
2012-08-06
Budget End
2013-01-31
Support Year
24
Fiscal Year
2012
Total Cost
$63,213
Indirect Cost
$21,453
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Villalobos, Victor Manuel; Hall, Francis; Jimeno, Antonio et al. (2018) Long-Term Follow-Up of Desmoid Fibromatosis Treated with PF-03084014, an Oral Gamma Secretase Inhibitor. Ann Surg Oncol 25:768-775
Montford, John R; Lehman, Allison M B; Bauer, Colin D et al. (2018) Bone marrow-derived cPLA2? contributes to renal fibrosis progression. J Lipid Res 59:380-390
Kogut, Igor; McCarthy, Sandra M; Pavlova, Maryna et al. (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9:745
Collins, Keagan P; Jackson, Kristen M; Gustafson, Daniel L (2018) Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. J Pharmacol Exp Ther 365:447-459
Goodspeed, Andrew; Jean, Annie; Costello, James C (2018) A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer. Eur Urol :
Niemeyer, Brian F; Oko, Lauren M; Medina, Eva M et al. (2018) Host Tumor Suppressor p18INK4c Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. J Virol 92:
Kiseljak-Vassiliades, Katja; Zhang, Yu; Bagby, Stacey M et al. (2018) Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 25:437-451
Nellan, Anandani; Rota, Christopher; Majzner, Robbie et al. (2018) Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J Immunother Cancer 6:30
Abraham, Christopher G; Ludwig, Michael P; Andrysik, Zdenek et al. (2018) ?Np63? Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas. Cell Rep 24:3224-3236
Sanchez, Gilson J; Richmond, Phillip A; Bunker, Eric N et al. (2018) Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res 46:1756-1776

Showing the most recent 10 out of 1634 publications