DEVELOPMENTAL THERAPEUTICS PROGRAM (Project-608) ABSTRACT Overview and Goals: The goal of the Developmental Therapeutics (DT) Program is to reduce the cancer burden through identification, development and testing of novel anticancer therapies and approaches. DT accomplishes this goal by hosting members with the required scientific expertise in the following areas: Target Inhibition and Companion Biomarkers, Drug Delivery, Radiation Biology and Delivery, Pharmacology, Stem Cells and Tumor Microenvironment, Immunotherapy, Preclinical Models and Imaging, Comparative Oncology and Clinical Trials. The program integrates this rich expertise into four major interdisciplinary focus groups (Drug Discovery, Preclinical Development, Early Clinical Development, and Delivery) that are linked by an overarching thematic emphasis on biomarkers and precision/ personalized medicine. Research Highlight: An example of the way the DT program takes laboratory studies forward to clinical testing is work from multiple DT members on Trametinib, a MEK1/MEK2 inhibitor, in patients whose tumors acquired resistance to BRAF inhibitor (J Clin Oncol, 20131; Lancet Oncol, 20122). Program Activities: Through stand-alone and intra-programmatic retreats, monthly meetings and a new grants program, the DT program promotes the transition of early findings through the therapeutic development process across the entire UCCC. For example, preclinical studies are conducted using novel model systems, pharmacology, and functional imaging allowing for the discovery of the appropriate biomarkers and patient selection criteria for incorporation into early clinical trials of targeted agents being tested pre-clinically. Through the establishment of close interactions between basic research laboratories, clinical scientists, the NCI, and the pharmaceutical industry, the DT leadership nurtures rapid development of new treatments and biomarkers. Members: The DT program has 111 members including 57 Full and 54 Associate members. The membership represents all 3 academic consortium institutions (University of Colorado Denver (UCD), University of Colorado Boulder (UCB), Colorado State University (CSU)) and are located in six different schools or colleges (Schools of Medicine, Pharmacy, Public Health, Liberal Arts at UCD; College of Arts and Sciences at UCB; College of Veterinary Medicine and Biomedical Sciences at CSU), and 18 departments. Current research funding is $18M. Peer-reviewed funding is $5.4M with $2.8M from the NCI and $2.6M from other peer sponsors. The DT Program produced 1,108 cancer-focused publications since the last review, of which 39% were inter- and 29% intra-programmatic, demonstrating the collaborative nature of the program. Future Directions: The program will enhance investigator initiated clinical trials (IITs) capitalizing on new investments by the UCCC that increase support for regulatory submissions and data management of IITs. The DT program will continue preclinical development of our own novel agents conceived within our program (e.g. SVC112, ONK101, neoamphimedine), and promote the identification of novel and efficacious drug combinations based on tumor molecular characteristics, biomarkers, and clinical testing of these therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA046934-31
Application #
9657685
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Villalobos, Victor Manuel; Hall, Francis; Jimeno, Antonio et al. (2018) Long-Term Follow-Up of Desmoid Fibromatosis Treated with PF-03084014, an Oral Gamma Secretase Inhibitor. Ann Surg Oncol 25:768-775
Montford, John R; Lehman, Allison M B; Bauer, Colin D et al. (2018) Bone marrow-derived cPLA2? contributes to renal fibrosis progression. J Lipid Res 59:380-390
Kogut, Igor; McCarthy, Sandra M; Pavlova, Maryna et al. (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9:745
Collins, Keagan P; Jackson, Kristen M; Gustafson, Daniel L (2018) Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. J Pharmacol Exp Ther 365:447-459
Goodspeed, Andrew; Jean, Annie; Costello, James C (2018) A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer. Eur Urol :
Niemeyer, Brian F; Oko, Lauren M; Medina, Eva M et al. (2018) Host Tumor Suppressor p18INK4c Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. J Virol 92:
Kiseljak-Vassiliades, Katja; Zhang, Yu; Bagby, Stacey M et al. (2018) Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 25:437-451
Nellan, Anandani; Rota, Christopher; Majzner, Robbie et al. (2018) Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J Immunother Cancer 6:30
Abraham, Christopher G; Ludwig, Michael P; Andrysik, Zdenek et al. (2018) ?Np63? Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas. Cell Rep 24:3224-3236
Sanchez, Gilson J; Richmond, Phillip A; Bunker, Eric N et al. (2018) Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res 46:1756-1776

Showing the most recent 10 out of 1634 publications