There is a vital need for quantitative assessment of tumor burden and cancer therapy response by in vivo imaging. Computed tomography (CT) and standard magnetic resonance imaging (MRI) cannot provide information on the molecular, biochemical and physiologic properties of cancer tissues, and may also fail to specifically distinguish viable tumor from benign conditions or necrotic tumor. Therefore, novel quantitative imaging techniques and protocols are needed to reveal biomarkers of molecular events induced by cancer therapy. In particular, early imaging of molecularly targeted pathways predicted to be essential for effective cancer therapy is highly likely to play a key role in patient management in the future. Development and use of quantitative imaging for early therapy assessment will greatly facilitate patient management, by sparing patients from weeks or months of toxicity and ineffective treatment. Additionally with the increasing rate of therapy development and related therapy trials, the development of minimally invasive, yet specific and accurate measurements of early therapeutic response has become of critical importance. Because none of the currently available imaging technologies can provide all of the needed information, there is an important trend to combine information from two or more imaging techniques. This need for multimodality imaging has led to a UPCI decision to combine two existing CCSG-funded shared facilities (MRI and PET), and to add a third modality (optical small animal imaging) to create a new, integrated UPCI shared facility, the In Vivo Imaging Facility (IVIF). In addition, the IVIF also incorporates the NCI-funded (CCSG supplement) Imaging Response Assessment Team (IRAT) program, which integrates the clinical research components of the IVIF. The IVIF provides expertise, to most of the CCSG programs of UPCI, in preclinical, translational, and clinical imaging using x-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and optical imaging modalities. The goals of the facility are 1) to provide preclinical assessment of biomarker expression throughout cancer treatment, 2) to provide methods for monitoring biological therapy, 3) to facilitate protocol development for cancer detection, diagnosis, and staging and 4) to advance methods for evaluating early therapy response prognosis following treatment. The IVIF has already made significant contributions to UPCI research by providing non-invasive imaging biomarkers for tumor diagnosis, staging, and prognosis in addition to implementation of protocols for early therapy response assessment. The IVIF has a broad scope and is integral to the Cancer Epidemiology and Prevention Program (e.g. for screening for lung lesions in heavy smokers). The services provided incorporate a multi-modality approach and include measurements of a number of biomarkers for the early evaluation of new therapies, including: 1) tumor volume measurement and Response Evaluation Criteria in Solid Tumors (RECIST) assessment or tumor growth analysis (MRI, PET, &Optical);response to cancer therapy analysis 2) tumor glucose metabolism, cell proliferation, and apoptosis (F-18 FDG PET, F-18 FMISO and F-18 ML-10);3) tumor cell proliferation (F-18 FLT PET);4) tumor capillary transfer rates (MRI);5) spectroscopic analyses for total choline (MRI), citrate, and intracellular sodium (MRI);6) synthesis of targeted contrast agents (MRI, PET, and Optical);7) cell labeling and tracking (MRI &Optical);and 8) custom methods development (MRI, PET, &Optical).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-25
Application #
8519343
Study Section
Special Emphasis Panel (ZCA1-RTRB-L)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
25
Fiscal Year
2013
Total Cost
$216,622
Indirect Cost
$69,738
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Yockey, Laura J; Jurado, Kellie A; Arora, Nitin et al. (2018) Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 3:
Chen, Jingci; Nagle, Alison M; Wang, Yu-Fen et al. (2018) Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors. J Biol Chem 293:3700-3709
Qin, Ye; Vasilatos, Shauna N; Chen, Lin et al. (2018) Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene :
Diaz-Perez, Julio A; Killeen, Meaghan E; Yang, Yin et al. (2018) Extracellular ATP and IL-23 Form a Local Inflammatory Circuit Leading to the Development of a Neutrophil-Dependent Psoriasiform Dermatitis. J Invest Dermatol 138:2595-2605
Evdokimova, Viktoria N; Gandhi, Manoj; Nikitski, Alyaksandr V et al. (2018) Nuclear myosin/actin-motored contact between homologous chromosomes is initiated by ATM kinase and homology-directed repair proteins at double-strand DNA breaks to suppress chromosome rearrangements. Oncotarget 9:13612-13622
Bissel, Stephanie J; Gurnsey, Kate; Jedema, Hank P et al. (2018) Aged Chinese-origin rhesus macaques infected with SIV develop marked viremia in absence of clinical disease, inflammation or cognitive impairment. Retrovirology 15:17
Knickelbein, Kyle; Tong, Jingshan; Chen, Dongshi et al. (2018) Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene 37:4599-4610
Ancevski Hunter, Katerina; Socinski, Mark A; Villaruz, Liza C (2018) PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol Diagn Ther 22:1-10
Luu, Thehang; Kim, Kyu-Pyo; Blanchard, Suzette et al. (2018) Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer. Breast Cancer Res Treat 167:469-478

Showing the most recent 10 out of 1187 publications