The Medicinal and Synthetic Chemistry Core (ChemCore) is a shared resource facility dedicated to providing chemistry services for advancing drug discovery and chemical biology research. The facility serves investigators ofthe Robert H. Lurie Comprehensive Cancer Center (RHLCCC), Northwestern University, and external organizations by providing a range of customized services in three primary areas: Cheminformatics, Medicinal and synthetic chemistry, and Compound purification. The cheminformatics service provides computational chemistry, molecular modeling, and computer-aided drug design. These services provide investigators with unique insights into fundamental processes of cancer biology and allow efficient access to powerful platforms to advance early stage drug discovery efforts prior to committing larger resources. The medicinal chemistry service provides researchers with access to high-level resources for the custom synthesis of molecular probe and tools compounds, hit-to-lead chemistry, lead optimization medicinal chemistry, and consulting on drug discovery projects. This service is staffed by professional medicinal chemists who help enable translational research based on the basic research of RHLCCC members. Finally, ChemCore also provides comprehensive instrumentation and expertise to purify and reformat small molecules. Purification services include a full-service custom dual-purpose analytical-to preparative mass-directed HPLC (A2Prep LCMS) and self-service analytical and preparative HPLCs, each equipped with UV and ELS detection. This equipment helps RHLCCC members carry out small molecule chemical biology and drug discovery research much more rapidly. ChemCore works closely with the affiliated RHLCCC High Throughput Analysis Laboratory (HTAL) and Developmental Therapeutics Core (DTC) facilities, which carry out high-throughput screening, in vivo testing, and pre-IND development. Together with these cores, ChemCore provides RHLCCC members and their collaborators with a pipeline to translate basic discoveries into the clinic.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA060553-19
Application #
8588642
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2018-07-31
Budget Start
2013-09-16
Budget End
2014-07-31
Support Year
19
Fiscal Year
2013
Total Cost
$96,447
Indirect Cost
$34,070
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Moinpour, Carol M; Donaldson, Gary W; Davis, Kimberly M et al. (2017) The challenge of measuring intra-individual change in fatigue during cancer treatment. Qual Life Res 26:259-271
Lamar, Tyra; Vanoye, Carlos G; Calhoun, Jeffrey et al. (2017) SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 102:38-48
Yu, Dou; Khan, Omar F; SuvĂ , Mario L et al. (2017) Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proc Natl Acad Sci U S A 114:E6147-E6156
Mohr, David C; Tomasino, Kathryn Noth; Lattie, Emily G et al. (2017) IntelliCare: An Eclectic, Skills-Based App Suite for the Treatment of Depression and Anxiety. J Med Internet Res 19:e10
Apple, Alexandra C; Ryals, Anthony J; Alpert, Kathryn I et al. (2017) Subtle hippocampal deformities in breast cancer survivors with reduced episodic memory and self-reported cognitive concerns. Neuroimage Clin 14:685-691
Lampe, Johanna W; Huang, Ying; Neuhouser, Marian L et al. (2017) Dietary biomarker evaluation in a controlled feeding study in women from the Women's Health Initiative cohort. Am J Clin Nutr 105:466-475
Ichikawa, Yuichi; Connelly, Caitlin F; Appleboim, Alon et al. (2017) A synthetic biology approach to probing nucleosome symmetry. Elife 6:
Zhou, Qiyuan; Dai, Jingbo; Chen, Tianji et al. (2017) Downregulation of PKC?/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 38:49-59
Park, Jong Kook; Peng, Han; Yang, Wending et al. (2017) miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways. FASEB J 31:256-265
Raji, Idris; Yadudu, Fatima; Janeira, Emily et al. (2017) Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg Med Chem 25:1202-1218

Showing the most recent 10 out of 1878 publications